Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.RegressionSolutionGradientView/HeuristicLab.Problems.DataAnalysis.Views/3.4/GradientChart.cs @ 13847

Last change on this file since 13847 was 13846, checked in by pfleck, 9 years ago

#2597

  • Added a manual y-axis control.
  • Fixed bug with dragging the cursor in the GradientChart out of the chart.
File size: 22.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Drawing;
25using System.Globalization;
26using System.Linq;
27using System.Threading;
28using System.Threading.Tasks;
29using System.Windows.Forms;
30using System.Windows.Forms.DataVisualization.Charting;
31using HeuristicLab.Common;
32using HeuristicLab.MainForm.WindowsForms;
33using HeuristicLab.Visualization.ChartControlsExtensions;
34
35namespace HeuristicLab.Problems.DataAnalysis.Views {
36  public partial class GradientChart : UserControl {
37    private ModifiableDataset sharedFixedVariables; // used for syncronising variable values between charts
38    private ModifiableDataset internalDataset; // holds the x values for each point drawn
39
40    private CancellationTokenSource cancelCurrentRecalculateSource;
41
42    private readonly List<IRegressionSolution> solutions;
43    private readonly Dictionary<IRegressionSolution, Series> seriesCache;
44    private readonly Dictionary<IRegressionSolution, Series> ciSeriesCache;
45
46    #region Properties
47    public bool ShowLegend {
48      get { return chart.Legends[0].Enabled; }
49      set { chart.Legends[0].Enabled = value; }
50    }
51    public bool ShowXAxisLabel {
52      get { return chart.ChartAreas[0].AxisX.Enabled == AxisEnabled.True; }
53      set { chart.ChartAreas[0].AxisX.Enabled = value ? AxisEnabled.True : AxisEnabled.False; }
54    }
55    public bool ShowYAxisLabel {
56      get { return chart.ChartAreas[0].AxisY.Enabled == AxisEnabled.True; }
57      set { chart.ChartAreas[0].AxisY.Enabled = value ? AxisEnabled.True : AxisEnabled.False; }
58    }
59    public bool ShowCursor {
60      get { return chart.Annotations[0].Visible; }
61      set { chart.Annotations[0].Visible = value; }
62    }
63
64    private int xAxisTicks = 5;
65    public int XAxisTicks {
66      get { return xAxisTicks; }
67      set {
68        if (value != xAxisTicks) {
69          xAxisTicks = value;
70          SetupAxis(chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
71          RecalculateInternalDataset();
72        }
73      }
74    }
75    private double? fixedXAxisMin;
76    public double? FixedXAxisMin {
77      get { return fixedXAxisMin; }
78      set {
79        if ((value.HasValue && fixedXAxisMin.HasValue && !value.Value.IsAlmost(fixedXAxisMin.Value)) || (value.HasValue != fixedXAxisMin.HasValue)) {
80          fixedXAxisMin = value;
81          SetupAxis(chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
82          RecalculateInternalDataset();
83        }
84      }
85    }
86    private double? fixedXAxisMax;
87    public double? FixedXAxisMax {
88      get { return fixedXAxisMax; }
89      set {
90        if ((value.HasValue && fixedXAxisMax.HasValue && !value.Value.IsAlmost(fixedXAxisMax.Value)) || (value.HasValue != fixedXAxisMax.HasValue)) {
91          fixedXAxisMax = value;
92          SetupAxis(chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
93          RecalculateInternalDataset();
94        }
95      }
96    }
97
98    private int yAxisTicks = 5;
99    public int YAxisTicks {
100      get { return yAxisTicks; }
101      set {
102        if (value != yAxisTicks) {
103          yAxisTicks = value;
104          SetupAxis(chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
105          RecalculateInternalDataset();
106        }
107      }
108    }
109    private double? fixedYAxisMin;
110    public double? FixedYAxisMin {
111      get { return fixedYAxisMin; }
112      set {
113        if ((value.HasValue && fixedYAxisMin.HasValue && !value.Value.IsAlmost(fixedYAxisMin.Value)) || (value.HasValue != fixedYAxisMin.HasValue)) {
114          fixedYAxisMin = value;
115          SetupAxis(chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
116        }
117      }
118    }
119    private double? fixedYAxisMax;
120    public double? FixedYAxisMax {
121      get { return fixedYAxisMax; }
122      set {
123        if ((value.HasValue && fixedYAxisMax.HasValue && !value.Value.IsAlmost(fixedYAxisMax.Value)) || (value.HasValue != fixedYAxisMax.HasValue)) {
124          fixedYAxisMax = value;
125          SetupAxis(chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
126        }
127      }
128    }
129
130    private double trainingMin = 1;
131    private double trainingMax = -1;
132
133    private int drawingSteps = 1000;
134    public int DrawingSteps {
135      get { return drawingSteps; }
136      set {
137        if (value != drawingSteps) {
138          drawingSteps = value;
139          RecalculateInternalDataset();
140          ResizeAllSeriesData();
141        }
142      }
143    }
144
145    private string freeVariable;
146    public string FreeVariable {
147      get { return freeVariable; }
148      set {
149        if (value == freeVariable) return;
150        if (solutions.Any(s => !s.ProblemData.Dataset.DoubleVariables.Contains(value))) {
151          throw new ArgumentException("Variable does not exist in the ProblemData of the Solutions.");
152        }
153        freeVariable = value;
154        RecalculateInternalDataset();
155      }
156    }
157
158    private double yMin;
159    public double YMin {
160      get { return yMin; }
161    }
162    private double yMax;
163    public double YMax {
164      get { return yMax; }
165    }
166
167    private VerticalLineAnnotation VerticalLineAnnotation {
168      get { return (VerticalLineAnnotation)chart.Annotations.SingleOrDefault(x => x is VerticalLineAnnotation); }
169    }
170    #endregion
171
172    public GradientChart() {
173      InitializeComponent();
174
175      solutions = new List<IRegressionSolution>();
176      seriesCache = new Dictionary<IRegressionSolution, Series>();
177      ciSeriesCache = new Dictionary<IRegressionSolution, Series>();
178
179      // Configure axis
180      chart.CustomizeAllChartAreas();
181      chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
182      chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
183      chart.ChartAreas[0].CursorX.Interval = 0;
184
185      chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
186      chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
187      chart.ChartAreas[0].CursorY.Interval = 0;
188
189      Disposed += GradientChart_Disposed;
190    }
191    private void GradientChart_Disposed(object sender, EventArgs e) {
192      if (cancelCurrentRecalculateSource != null)
193        cancelCurrentRecalculateSource.Cancel();
194    }
195
196    public void Configure(IEnumerable<IRegressionSolution> solutions, ModifiableDataset sharedFixedVariables, string freeVariable, int drawingSteps, bool initializeAxisRanges = true) {
197      if (!SolutionsCompatible(solutions))
198        throw new ArgumentException("Solutions are not compatible with the problem data.");
199      this.freeVariable = freeVariable;
200      this.drawingSteps = drawingSteps;
201
202      this.solutions.Clear();
203      this.solutions.AddRange(solutions);
204
205      // add an event such that whenever a value is changed in the shared dataset,
206      // this change is reflected in the internal dataset (where the value becomes a whole column)
207      if (this.sharedFixedVariables != null)
208        this.sharedFixedVariables.ItemChanged -= sharedFixedVariables_ItemChanged;
209      this.sharedFixedVariables = sharedFixedVariables;
210      this.sharedFixedVariables.ItemChanged += sharedFixedVariables_ItemChanged;
211
212      RecalculateTrainingLimits(initializeAxisRanges);
213      RecalculateInternalDataset();
214
215      chart.Series.Clear();
216      seriesCache.Clear();
217      ciSeriesCache.Clear();
218      foreach (var solution in this.solutions) {
219        var series = CreateSeries(solution);
220        seriesCache.Add(solution, series.Item1);
221        if (series.Item2 != null)
222          ciSeriesCache.Add(solution, series.Item2);
223      }
224
225      ResizeAllSeriesData();
226      OrderAndColorSeries();
227    }
228
229    public async Task RecalculateAsync(bool updateOnFinish = true, bool resetYAxis = true) {
230      if (IsDisposed
231        || sharedFixedVariables == null || !solutions.Any() || string.IsNullOrEmpty(freeVariable)
232        || trainingMin.IsAlmost(trainingMax) || trainingMin > trainingMax || drawingSteps == 0)
233        return;
234
235      statusLabel.Visible = true;
236      Update(); // immediately show label
237
238      // cancel previous recalculate call
239      if (cancelCurrentRecalculateSource != null)
240        cancelCurrentRecalculateSource.Cancel();
241      cancelCurrentRecalculateSource = new CancellationTokenSource();
242
243      // Set cursor and x-axis
244      var defaultValue = sharedFixedVariables.GetDoubleValue(freeVariable, 0);
245      VerticalLineAnnotation.X = defaultValue;
246      chart.ChartAreas[0].AxisX.Title = FreeVariable + " : " + defaultValue.ToString("N3", CultureInfo.CurrentCulture);
247
248      // Update series
249      var cancellationToken = cancelCurrentRecalculateSource.Token;
250      try {
251        var limits = await UpdateAllSeriesDataAsync(cancellationToken);
252        //cancellationToken.ThrowIfCancellationRequested();
253
254        yMin = limits.Lower;
255        yMax = limits.Upper;
256        // Set y-axis
257        if (resetYAxis)
258          SetupAxis(chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
259
260        UpdateOutOfTrainingRangeStripLines();
261
262        statusLabel.Visible = false;
263        if (updateOnFinish)
264          Update();
265      }
266      catch (OperationCanceledException) { }
267      catch (AggregateException ae) {
268        if (!ae.InnerExceptions.Any(e => e is OperationCanceledException))
269          throw;
270      }
271    }
272
273    private void SetupAxis(Axis axis, double minValue, double maxValue, int ticks, double? fixedAxisMin, double? fixedAxisMax) {
274      double axisMin, axisMax, axisInterval;
275      ChartUtil.CalculateAxisInterval(minValue, maxValue, ticks, out axisMin, out axisMax, out axisInterval);
276      axis.Minimum = fixedAxisMin ?? axisMin;
277      axis.Maximum = fixedAxisMax ?? axisMax;
278      axis.Interval = (axis.Maximum - axis.Minimum) / ticks;
279
280      try {
281        chart.ChartAreas[0].RecalculateAxesScale();
282      }
283      catch (InvalidOperationException) {
284        // Can occur if eg. axis min == axis max
285      }
286    }
287
288    private void RecalculateTrainingLimits(bool initializeAxisRanges) {
289      trainingMin = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Min()).Max();
290      trainingMax = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Max()).Min();
291
292      if (initializeAxisRanges) {
293        double xmin, xmax, xinterval;
294        ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval);
295        FixedXAxisMin = xmin;
296        FixedXAxisMax = xmax;
297      }
298    }
299
300    private void RecalculateInternalDataset() {
301      if (sharedFixedVariables == null)
302        return;
303
304      // we expand the range in order to get nice tick intervals on the x axis
305      double xmin, xmax, xinterval;
306      ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval);
307
308      if (FixedXAxisMin.HasValue) xmin = FixedXAxisMin.Value;
309      if (FixedXAxisMax.HasValue) xmax = FixedXAxisMax.Value;
310      double step = (xmax - xmin) / drawingSteps;
311
312      var xvalues = new List<double>();
313      for (int i = 0; i < drawingSteps; i++)
314        xvalues.Add(xmin + i * step);
315
316      var variables = sharedFixedVariables.DoubleVariables.ToList();
317      internalDataset = new ModifiableDataset(variables,
318        variables.Select(x => x == FreeVariable
319          ? xvalues
320          : Enumerable.Repeat(sharedFixedVariables.GetDoubleValue(x, 0), xvalues.Count).ToList()
321        )
322      );
323    }
324
325    private Tuple<Series, Series> CreateSeries(IRegressionSolution solution) {
326      var series = new Series {
327        ChartType = SeriesChartType.Line,
328        Name = solution.ProblemData.TargetVariable + " " + solutions.IndexOf(solution)
329      };
330      series.LegendText = series.Name;
331
332      var confidenceBoundSolution = solution as IConfidenceBoundRegressionSolution;
333      Series confidenceIntervalSeries = null;
334      if (confidenceBoundSolution != null) {
335        confidenceIntervalSeries = new Series {
336          ChartType = SeriesChartType.Range,
337          YValuesPerPoint = 2,
338          Name = "95% Conf. Interval " + series.Name,
339          IsVisibleInLegend = false
340        };
341      }
342      return Tuple.Create(series, confidenceIntervalSeries);
343    }
344
345    private void OrderAndColorSeries() {
346      chart.SuspendRepaint();
347
348      chart.Series.Clear();
349      // Add mean series for applying palette colors
350      foreach (var solution in solutions) {
351        chart.Series.Add(seriesCache[solution]);
352      }
353
354      chart.Palette = ChartColorPalette.BrightPastel;
355      chart.ApplyPaletteColors();
356      chart.Palette = ChartColorPalette.None;
357
358      // Add confidence interval series before its coresponding series for correct z index
359      foreach (var solution in solutions) {
360        Series ciSeries;
361        if (ciSeriesCache.TryGetValue(solution, out ciSeries)) {
362          var series = seriesCache[solution];
363          ciSeries.Color =  Color.FromArgb(40, series.Color);
364          int idx = chart.Series.IndexOf(seriesCache[solution]);
365          chart.Series.Insert(idx, ciSeries);
366        }
367      }
368
369      chart.ResumeRepaint(true);
370    }
371
372    private async Task<DoubleLimit> UpdateAllSeriesDataAsync(CancellationToken cancellationToken) {
373      var updateTasks = solutions.Select(solution => UpdateSeriesDataAsync(solution, cancellationToken));
374
375      double min = double.MaxValue, max = double.MinValue;
376      foreach (var update in updateTasks) {
377        var limit = await update;
378        if (limit.Lower < min) min = limit.Lower;
379        if (limit.Upper > max) max = limit.Upper;
380      }
381
382      return new DoubleLimit(min, max);
383    }
384
385    private Task<DoubleLimit> UpdateSeriesDataAsync(IRegressionSolution solution, CancellationToken cancellationToken) {
386      return Task.Run(() => {
387        var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
388        var yvalues = solution.Model.GetEstimatedValues(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
389
390        double min = double.MaxValue, max = double.MinValue;
391
392        var series = seriesCache[solution];
393        for (int i = 0; i < xvalues.Count; i++) {
394          series.Points[i].SetValueXY(xvalues[i], yvalues[i]);
395          if (yvalues[i] < min) min = yvalues[i];
396          if (yvalues[i] > max) max = yvalues[i];
397        }
398
399        var confidenceBoundSolution = solution as IConfidenceBoundRegressionSolution;
400        if (confidenceBoundSolution != null) {
401          var confidenceIntervalSeries = ciSeriesCache[solution];
402
403          cancellationToken.ThrowIfCancellationRequested();
404          var variances =
405            confidenceBoundSolution.Model.GetEstimatedVariances(internalDataset,
406              Enumerable.Range(0, internalDataset.Rows)).ToList();
407          for (int i = 0; i < xvalues.Count; i++) {
408            var lower = yvalues[i] - 1.96 * Math.Sqrt(variances[i]);
409            var upper = yvalues[i] + 1.96 * Math.Sqrt(variances[i]);
410            confidenceIntervalSeries.Points[i].SetValueXY(xvalues[i], lower, upper);
411            if (lower < min) min = lower;
412            if (upper > max) max = upper;
413          }
414        }
415
416        cancellationToken.ThrowIfCancellationRequested();
417        return new DoubleLimit(min, max);
418      }, cancellationToken);
419    }
420
421    private void ResizeAllSeriesData() {
422      if (internalDataset == null)
423        return;
424
425      var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
426      foreach (var solution in solutions)
427        ResizeSeriesData(solution, xvalues);
428    }
429    private void ResizeSeriesData(IRegressionSolution solution, IList<double> xvalues = null) {
430      if (xvalues == null)
431        xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
432
433      var series = seriesCache[solution];
434      series.Points.SuspendUpdates();
435      for (int i = 0; i < xvalues.Count; i++)
436        series.Points.Add(new DataPoint(xvalues[i], 0.0));
437      series.Points.ResumeUpdates();
438
439      Series confidenceIntervalSeries;
440      if (ciSeriesCache.TryGetValue(solution, out confidenceIntervalSeries)) {
441        confidenceIntervalSeries.Points.SuspendUpdates();
442        for (int i = 0; i < xvalues.Count; i++)
443          confidenceIntervalSeries.Points.Add(new DataPoint(xvalues[i], new[] { -1.0, 1.0 }));
444        confidenceIntervalSeries.Points.ResumeUpdates();
445      }
446    }
447
448    public async Task AddSolutionAsync(IRegressionSolution solution) {
449      if (!SolutionsCompatible(solutions.Concat(new[] { solution })))
450        throw new ArgumentException("The solution is not compatible with the problem data.");
451      if (solutions.Contains(solution))
452        return;
453
454      solutions.Add(solution);
455      RecalculateTrainingLimits(true);
456
457      var series = CreateSeries(solution);
458      seriesCache.Add(solution, series.Item1);
459      if (series.Item2 != null)
460        ciSeriesCache.Add(solution, series.Item2);
461
462      ResizeSeriesData(solution);
463      OrderAndColorSeries();
464
465      await RecalculateAsync();
466    }
467    public async Task RemoveSolutionAsync(IRegressionSolution solution) {
468      if (!solutions.Remove(solution))
469        return;
470
471      RecalculateTrainingLimits(true);
472
473      seriesCache.Remove(solution);
474      ciSeriesCache.Remove(solution);
475
476      await RecalculateAsync();
477    }
478
479    private static bool SolutionsCompatible(IEnumerable<IRegressionSolution> solutions) {
480      foreach (var solution1 in solutions) {
481        var variables1 = solution1.ProblemData.Dataset.DoubleVariables;
482        foreach (var solution2 in solutions) {
483          if (solution1 == solution2)
484            continue;
485          var variables2 = solution2.ProblemData.Dataset.DoubleVariables;
486          if (!variables1.All(variables2.Contains))
487            return false;
488        }
489      }
490      return true;
491    }
492
493    private void UpdateOutOfTrainingRangeStripLines() {
494      var axisX = chart.ChartAreas[0].AxisX;
495      var lowerStripLine = axisX.StripLines[0];
496      var upperStripLine = axisX.StripLines[1];
497
498      lowerStripLine.IntervalOffset = axisX.Minimum;
499      lowerStripLine.StripWidth = trainingMin - axisX.Minimum;
500
501      upperStripLine.IntervalOffset = trainingMax;
502      upperStripLine.StripWidth = axisX.Maximum - trainingMax;
503    }
504
505    #region Events
506    public event EventHandler VariableValueChanged;
507    public void OnVariableValueChanged(object sender, EventArgs args) {
508      var changed = VariableValueChanged;
509      if (changed == null) return;
510      changed(sender, args);
511    }
512
513    private void sharedFixedVariables_ItemChanged(object o, EventArgs<int, int> e) {
514      if (o != sharedFixedVariables) return;
515      var variables = sharedFixedVariables.DoubleVariables.ToList();
516      var rowIndex = e.Value;
517      var columnIndex = e.Value2;
518
519      var variableName = variables[columnIndex];
520      if (variableName == FreeVariable) return;
521      var v = sharedFixedVariables.GetDoubleValue(variableName, rowIndex);
522      var values = new List<double>(Enumerable.Repeat(v, DrawingSteps));
523      internalDataset.ReplaceVariable(variableName, values);
524    }
525
526    private double oldCurserPosition = double.NaN;
527    private void chart_AnnotationPositionChanging(object sender, AnnotationPositionChangingEventArgs e) {
528      var step = (trainingMax - trainingMin) / drawingSteps;
529      double newLocation = step * (long)Math.Round(e.NewLocationX / step);
530      var axisX = chart.ChartAreas[0].AxisX;
531      if (newLocation > axisX.Maximum)
532        newLocation = axisX.Maximum;
533      if (newLocation < axisX.Minimum)
534        newLocation = axisX.Minimum;
535
536      e.NewLocationX = newLocation;
537
538      var annotation = VerticalLineAnnotation;
539      var x = annotation.X;
540      sharedFixedVariables.SetVariableValue(x, FreeVariable, 0);
541
542      chart.ChartAreas[0].AxisX.Title = FreeVariable + " : " + x.ToString("N3", CultureInfo.CurrentCulture);
543      chart.Update();
544
545      if (!oldCurserPosition.IsAlmost(e.NewLocationX))
546        OnVariableValueChanged(this, EventArgs.Empty);
547      oldCurserPosition = e.NewLocationX;
548    }
549
550    private void chart_MouseMove(object sender, MouseEventArgs e) {
551      bool hitCursor = chart.HitTest(e.X, e.Y).ChartElementType == ChartElementType.Annotation;
552      chart.Cursor = hitCursor ? Cursors.VSplit : Cursors.Default;
553    }
554
555    private void chart_FormatNumber(object sender, FormatNumberEventArgs e) {
556      if (e.ElementType == ChartElementType.AxisLabels) {
557        switch (e.Format) {
558          case "CustomAxisXFormat":
559            break;
560          case "CustomAxisYFormat":
561            var v = e.Value;
562            e.LocalizedValue = string.Format("{0,5}", v);
563            break;
564          default:
565            break;
566        }
567      }
568    }
569
570    private void chart_DragDrop(object sender, DragEventArgs e) {
571      var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
572      if (data != null) {
573        var solution = data as IRegressionSolution;
574        if (!solutions.Contains(solution))
575          AddSolutionAsync(solution);
576      }
577    }
578    private void chart_DragEnter(object sender, DragEventArgs e) {
579      if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return;
580      e.Effect = DragDropEffects.None;
581
582      var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
583      var regressionSolution = data as IRegressionSolution;
584      if (regressionSolution != null) {
585        e.Effect = DragDropEffects.Copy;
586      }
587    }
588    #endregion
589  }
590}
Note: See TracBrowser for help on using the repository browser.