[10310] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[11185] | 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[10310] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[10383] | 22 | using System;
|
---|
[10536] | 23 | using System.Collections.Generic;
|
---|
[10982] | 24 | using HeuristicLab.Common;
|
---|
[10310] | 25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 26 |
|
---|
| 27 | namespace HeuristicLab.DataPreprocessing {
|
---|
[10908] | 28 | public class ProblemDataCreator {
|
---|
[10310] | 29 |
|
---|
| 30 | private readonly IPreprocessingContext context;
|
---|
| 31 |
|
---|
[10695] | 32 | private Dataset ExportedDataset {
|
---|
| 33 | get { return exporteDataset ?? (exporteDataset = context.Data.ExportToDataset()); }
|
---|
| 34 | }
|
---|
| 35 | private Dataset exporteDataset;
|
---|
| 36 |
|
---|
[10922] | 37 | private IList<ITransformation> Transformations { get { return context.Data.Transformations; } }
|
---|
[10695] | 38 |
|
---|
[10383] | 39 | public ProblemDataCreator(IPreprocessingContext context) {
|
---|
[10310] | 40 | this.context = context;
|
---|
| 41 | }
|
---|
| 42 |
|
---|
[10383] | 43 | public IDataAnalysisProblemData CreateProblemData() {
|
---|
[11098] | 44 | if (context.Data.Rows == 0 || context.Data.Columns == 0) return null;
|
---|
| 45 |
|
---|
[10990] | 46 | var oldProblemData = context.ProblemData;
|
---|
| 47 | IDataAnalysisProblemData problemData;
|
---|
[10310] | 48 |
|
---|
[10536] | 49 | if (oldProblemData is RegressionProblemData) {
|
---|
[10695] | 50 | problemData = CreateRegressionData((RegressionProblemData)oldProblemData);
|
---|
[10536] | 51 | } else if (oldProblemData is ClassificationProblemData) {
|
---|
[10695] | 52 | problemData = CreateClassificationData((ClassificationProblemData)oldProblemData);
|
---|
[10536] | 53 | } else if (oldProblemData is ClusteringProblemData) {
|
---|
[10695] | 54 | problemData = CreateClusteringData((ClusteringProblemData)oldProblemData);
|
---|
[10536] | 55 | } else {
|
---|
| 56 | throw new NotImplementedException("The type of the DataAnalysisProblemData is not supported.");
|
---|
[10383] | 57 | }
|
---|
| 58 |
|
---|
[10536] | 59 | SetTrainingAndTestPartition(problemData);
|
---|
| 60 |
|
---|
[10383] | 61 | return problemData;
|
---|
| 62 | }
|
---|
| 63 |
|
---|
[10695] | 64 | private IDataAnalysisProblemData CreateRegressionData(RegressionProblemData oldProblemData) {
|
---|
[10536] | 65 | var targetVariable = oldProblemData.TargetVariable;
|
---|
| 66 | // target variable must be double and must exist in the new dataset
|
---|
[10982] | 67 | return new RegressionProblemData(ExportedDataset, GetDoubleInputVariables(targetVariable), targetVariable, Transformations);
|
---|
[10536] | 68 | }
|
---|
[10310] | 69 |
|
---|
[10695] | 70 | private IDataAnalysisProblemData CreateClassificationData(ClassificationProblemData oldProblemData) {
|
---|
[10536] | 71 | var targetVariable = oldProblemData.TargetVariable;
|
---|
| 72 | // target variable must be double and must exist in the new dataset
|
---|
[10982] | 73 | return new ClassificationProblemData(ExportedDataset, GetDoubleInputVariables(targetVariable), targetVariable, Transformations);
|
---|
[10536] | 74 | }
|
---|
[10383] | 75 |
|
---|
[10695] | 76 | private IDataAnalysisProblemData CreateClusteringData(ClusteringProblemData oldProblemData) {
|
---|
[10982] | 77 | return new ClusteringProblemData(ExportedDataset, GetDoubleInputVariables(String.Empty), Transformations);
|
---|
[10383] | 78 | }
|
---|
| 79 |
|
---|
| 80 | private void SetTrainingAndTestPartition(IDataAnalysisProblemData problemData) {
|
---|
| 81 | var ppData = context.Data;
|
---|
| 82 |
|
---|
| 83 | problemData.TrainingPartition.Start = ppData.TrainingPartition.Start;
|
---|
| 84 | problemData.TrainingPartition.End = ppData.TrainingPartition.End;
|
---|
| 85 | problemData.TestPartition.Start = ppData.TestPartition.Start;
|
---|
| 86 | problemData.TestPartition.End = ppData.TestPartition.End;
|
---|
| 87 | }
|
---|
[10982] | 88 |
|
---|
| 89 | private IEnumerable<string> GetDoubleInputVariables(string targetVariable) {
|
---|
| 90 | var variableNames = new List<string>();
|
---|
| 91 | for (int i = 0; i < context.Data.Columns; ++i) {
|
---|
| 92 | var variableName = context.Data.GetVariableName(i);
|
---|
[11185] | 93 | if (context.Data.VariableHasType<double>(i)
|
---|
[10982] | 94 | && variableName != targetVariable
|
---|
| 95 | && IsNotConstantInputVariable(context.Data.GetValues<double>(i))) {
|
---|
| 96 |
|
---|
| 97 | variableNames.Add(variableName);
|
---|
| 98 | }
|
---|
| 99 | }
|
---|
| 100 | return variableNames;
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | private bool IsNotConstantInputVariable(IList<double> list) {
|
---|
| 104 | return context.Data.TrainingPartition.End - context.Data.TrainingPartition.Start > 1 || list.Range() > 0;
|
---|
| 105 | }
|
---|
[10310] | 106 | }
|
---|
| 107 | }
|
---|