1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
|
---|
27 |
|
---|
28 | /// <summary>
|
---|
29 | /// Crowding distance d(x,A) is usually defined between a point x and a set of points A
|
---|
30 | /// d(x,A) is then a weighted sum over all dimensions where for each dimension the next larger and the next smaller Point to x are subtracted
|
---|
31 | /// I extended the concept and defined the Crowding distance of a front A as the mean of the crowding distances of every point x in A
|
---|
32 | /// C(A) = mean(d(x,A)) where x in A and d(x,A) is not infinite
|
---|
33 | /// Beware that Crowding is not normalized for the number of dimensions. A higher number of dimensions normlly indicated higher expected Crowding values
|
---|
34 | /// </summary>
|
---|
35 | public static class Crowding {
|
---|
36 |
|
---|
37 | public static double Calculate(IEnumerable<double[]> front, double[,] bounds) {
|
---|
38 | return GetForFront(front, bounds).Where(d => !double.IsPositiveInfinity(d)).DefaultIfEmpty(double.PositiveInfinity).Average();
|
---|
39 | }
|
---|
40 |
|
---|
41 | public static IEnumerable<double> GetForFront(IEnumerable<double[]> front, double[,] bounds) {
|
---|
42 | if (front == null) throw new ArgumentException("Fronts must not be null");
|
---|
43 | if (!front.Any()) throw new ArgumentException("Fronts must not be empty");
|
---|
44 | if (bounds == null) throw new ArgumentException("Bounds must not be null");
|
---|
45 | double[] pointsums = new double[front.Count()];
|
---|
46 |
|
---|
47 | for (int dim = 0; dim < front.First().Length; dim++) {
|
---|
48 |
|
---|
49 | double[] arr = front.Select(x => x[dim]).ToArray();
|
---|
50 | Array.Sort(arr);
|
---|
51 |
|
---|
52 | double fmax = bounds[dim % bounds.GetLength(0), 1];
|
---|
53 | double fmin = bounds[dim % bounds.GetLength(0), 0];
|
---|
54 |
|
---|
55 | int pointIdx = 0;
|
---|
56 | foreach (double[] point in front) {
|
---|
57 | double d = 0;
|
---|
58 | int pos = Array.BinarySearch(arr, point[dim]);
|
---|
59 | if (pos != 0 && pos != arr.Count() - 1) {
|
---|
60 | d = (arr[pos + 1] - arr[pos - 1]) / (fmax - fmin);
|
---|
61 | pointsums[pointIdx++] += d;
|
---|
62 | } else {
|
---|
63 | pointsums[pointIdx++] = Double.PositiveInfinity;
|
---|
64 | }
|
---|
65 | }
|
---|
66 | }
|
---|
67 | return pointsums;
|
---|
68 | }
|
---|
69 |
|
---|
70 | public static double GetForSinglePoints(IEnumerable<double[]> front, double[,] bounds, int pointIndex) {
|
---|
71 | if (front == null) throw new ArgumentException("Fronts must not be null");
|
---|
72 | if (!front.Any()) throw new ArgumentException("Fronts must not be empty");
|
---|
73 | if (bounds == null) throw new ArgumentException("Bounds must not be null");
|
---|
74 | if (pointIndex < 0 || front.Count() <= pointIndex) throw new ArgumentException("PointIndex is not valid ");
|
---|
75 | double pointsum = 0;
|
---|
76 | double[] point = front.ElementAt(pointIndex);
|
---|
77 | for (int dim = 0; dim < front.First().Length; dim++) {
|
---|
78 |
|
---|
79 | double[] arr = front.Select(x => x[dim]).ToArray();
|
---|
80 | Array.Sort(arr);
|
---|
81 |
|
---|
82 | double fmax = bounds[dim % bounds.GetLength(0), 1];
|
---|
83 | double fmin = bounds[dim % bounds.GetLength(0), 0];
|
---|
84 |
|
---|
85 | int pointIdx = pointIndex;
|
---|
86 |
|
---|
87 | int pos = Array.BinarySearch(arr, point[dim]);
|
---|
88 | if (pos != 0 && pos != arr.Count() - 1) {
|
---|
89 | double d = (arr[pos + 1] - arr[pos - 1]) / (fmax - fmin);
|
---|
90 | pointsum += d;
|
---|
91 | }
|
---|
92 |
|
---|
93 | }
|
---|
94 | return pointsum;
|
---|
95 | }
|
---|
96 |
|
---|
97 | }
|
---|
98 | }
|
---|