1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using System;
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.MultiObjectiveTestFunctions {
|
---|
29 | [Item("IHR1", "Testfunction as defined as IHR1 in \"Igel, C., Hansen, N., & Roth, S. (2007). Covariance matrix adaptation for multi-objective optimization. Evolutionary computation, 15(1), 1-28.\" [24.06.16]")]
|
---|
30 | [StorableClass]
|
---|
31 | public class IHR1 : IHR {
|
---|
32 |
|
---|
33 | public override IEnumerable<double[]> OptimalParetoFront(int objectives) {
|
---|
34 | List<double[]> res = new List<double[]>();
|
---|
35 | for (int i = 0; i <= 500; i++) {
|
---|
36 | RealVector r = new RealVector(objectives);
|
---|
37 | r[0] = 1 / 500.0 * i;
|
---|
38 |
|
---|
39 | res.Add(this.Evaluate(r, objectives));
|
---|
40 | }
|
---|
41 |
|
---|
42 |
|
---|
43 | return res;
|
---|
44 | }
|
---|
45 | public override double BestKnownHypervolume(int objectives) {
|
---|
46 | return Hypervolume.Calculate(OptimalParetoFront(objectives), ReferencePoint(objectives), Maximization(objectives));
|
---|
47 | }
|
---|
48 |
|
---|
49 | [StorableConstructor]
|
---|
50 | protected IHR1(bool deserializing) : base(deserializing) { }
|
---|
51 | protected IHR1(IHR1 original, Cloner cloner) : base(original, cloner) { }
|
---|
52 | public IHR1() : base() {
|
---|
53 | }
|
---|
54 |
|
---|
55 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
56 | return new IHR1(this, cloner);
|
---|
57 | }
|
---|
58 |
|
---|
59 | protected override double F1(RealVector y) {
|
---|
60 | return Math.Abs(y[0]);
|
---|
61 | }
|
---|
62 |
|
---|
63 | protected override double F2(RealVector r, RealVector y) {
|
---|
64 | var g = G(y);
|
---|
65 | return g * HF(1 - Math.Sqrt(H(y[0], y) / g), y);
|
---|
66 | }
|
---|
67 |
|
---|
68 | protected override double G(RealVector y) {
|
---|
69 | double sum = 0.0;
|
---|
70 | for (int i = 1; i < y.Length; i++) {
|
---|
71 | sum += HG(y[i]);
|
---|
72 | }
|
---|
73 | return 1 + 9 * sum / (y.Length - 1);
|
---|
74 | }
|
---|
75 | }
|
---|
76 | }
|
---|