Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GrammaticalOptimization/Test/TestTunedSettings.cs @ 12092

Last change on this file since 12092 was 12025, checked in by gkronber, 10 years ago

#2283: unit test cases for symbolic regression

File size: 11.4 KB
RevLine 
[12014]1using System;
2using System.Collections.Generic;
3using System.Globalization;
4using System.Linq;
5using System.Text;
6using System.Threading.Tasks;
7using HeuristicLab.Algorithms.Bandits;
8using HeuristicLab.Algorithms.Bandits.BanditPolicies;
9using HeuristicLab.Algorithms.Bandits.GrammarPolicies;
10using HeuristicLab.Algorithms.Bandits.Models;
11using HeuristicLab.Algorithms.GrammaticalOptimization;
12using HeuristicLab.Common;
[12025]13using HeuristicLab.Problems.GrammaticalOptimization.SymbReg;
[12014]14using Microsoft.VisualStudio.TestTools.UnitTesting;
15using RandomPolicy = HeuristicLab.Algorithms.Bandits.BanditPolicies.RandomPolicy;
16
17namespace HeuristicLab.Problems.GrammaticalOptimization.Test {
18  [TestClass]
19  public class TestTunedSettings {
20    private const int randSeed = 31415;
21    internal class Configuration {
22      public IProblem Problem;
23      public int MaxSize;
24      public int RandSeed;
25
26      public override string ToString() {
27        return string.Format("{0} {1} {2}", RandSeed, Problem, MaxSize);
28      }
29    }
30    [TestMethod]
[12025]31    [Timeout(1000 * 60 * 60 * 12)] // 12 hours
[12014]32    // this configuration worked especially well in the experiments
[12025]33    public void TestAllPoliciesArtificialAnt() {
[12014]34      CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
35
36      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
37      {
38        (randSeed) => (ISymbolicExpressionTreeProblem)new SantaFeAntProblem(),
39      };
40
41      var policyFactories = new Func<IBanditPolicy>[]
42        {
43         () => new RandomPolicy(),
[12025]44         () => new ActiveLearningPolicy(), 
[12014]45         () => new EpsGreedyPolicy(0.01, (aInfo)=> aInfo.MaxReward, "max"),
46         () => new EpsGreedyPolicy(0.05, (aInfo)=> aInfo.MaxReward, "max"),
47         () => new EpsGreedyPolicy(0.1, (aInfo)=> aInfo.MaxReward, "max"),
48         () => new EpsGreedyPolicy(0.2, (aInfo)=> aInfo.MaxReward, "max"),
49         //() => new GaussianThompsonSamplingPolicy(),
50         () => new GaussianThompsonSamplingPolicy(true),
51         () => new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 10, 1)),
52         () => new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 10, 1, 1)),
53         //() => new BernoulliThompsonSamplingPolicy(),
54         () => new GenericThompsonSamplingPolicy(new BernoulliModel(1, 1)),
55         () => new EpsGreedyPolicy(0.01),
56         () => new EpsGreedyPolicy(0.05),
57         () => new EpsGreedyPolicy(0.1),
58         () => new EpsGreedyPolicy(0.2),
59         () => new EpsGreedyPolicy(0.5),
60         () => new UCTPolicy(0.01),
61         () => new UCTPolicy(0.05),
62         () => new UCTPolicy(0.1),
63         () => new UCTPolicy(0.5),
64         () => new UCTPolicy(1),
65         () => new UCTPolicy(2),
66         () => new UCTPolicy( 5),
67         () => new UCTPolicy( 10),
68         () => new ModifiedUCTPolicy(0.01),
69         () => new ModifiedUCTPolicy(0.05),
70         () => new ModifiedUCTPolicy(0.1),
71         () => new ModifiedUCTPolicy(0.5),
72         () => new ModifiedUCTPolicy(1),
73         () => new ModifiedUCTPolicy(2),
74         () => new ModifiedUCTPolicy( 5),
75         () => new ModifiedUCTPolicy( 10),
76         () => new UCB1Policy(),
77         () => new UCB1TunedPolicy(),
78         () => new UCBNormalPolicy(),
79         () => new BoltzmannExplorationPolicy(1),
80         () => new BoltzmannExplorationPolicy(10),
81         () => new BoltzmannExplorationPolicy(20),
82         () => new BoltzmannExplorationPolicy(100),
83         () => new BoltzmannExplorationPolicy(200),
84         () => new BoltzmannExplorationPolicy(500),
[12025]85         () => new ChernoffIntervalEstimationPolicy( 0.01),
86         () => new ChernoffIntervalEstimationPolicy( 0.05),
87         () => new ChernoffIntervalEstimationPolicy( 0.1),
88         () => new ChernoffIntervalEstimationPolicy( 0.2),
[12014]89         () => new ThresholdAscentPolicy(5, 0.01),
90         () => new ThresholdAscentPolicy(5, 0.05),
91         () => new ThresholdAscentPolicy(5, 0.1),
92         () => new ThresholdAscentPolicy(5, 0.2),
93         () => new ThresholdAscentPolicy(10, 0.01),
94         () => new ThresholdAscentPolicy(10, 0.05),
95         () => new ThresholdAscentPolicy(10, 0.1),
96         () => new ThresholdAscentPolicy(10, 0.2),
97         () => new ThresholdAscentPolicy(50, 0.01),
98         () => new ThresholdAscentPolicy(50, 0.05),
99         () => new ThresholdAscentPolicy(50, 0.1),
100         () => new ThresholdAscentPolicy(50, 0.2),
101         () => new ThresholdAscentPolicy(100, 0.01),
102         () => new ThresholdAscentPolicy(100, 0.05),
103         () => new ThresholdAscentPolicy(100, 0.1),
104         () => new ThresholdAscentPolicy(100, 0.2),
105         () => new ThresholdAscentPolicy(500, 0.01),
106         () => new ThresholdAscentPolicy(500, 0.05),
107         () => new ThresholdAscentPolicy(500, 0.1),
108         () => new ThresholdAscentPolicy(500, 0.2),
109         () => new ThresholdAscentPolicy(5000, 0.01),
110         () => new ThresholdAscentPolicy(10000, 0.01),
111        };
112      var maxSizes = new int[] { 17 };  // necessary size for ant programm
113      int nReps = 20;
[12025]114      int maxIterations = 100000;
[12014]115      foreach (var instanceFactory in instanceFactories) {
116        var sumBestQ = 0.0;
117        var sumItersToBest = 0;
118        double fractionSolved = 0.0;
119        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, maxSizes)) {
120          foreach (var policy in policyFactories) {
121            var prob = conf.Problem;
122            var maxLen = conf.MaxSize;
123            var rand = new Random(conf.RandSeed);
124
125            var solver = new SequentialSearch(prob, maxLen, rand, 0, new GenericGrammarPolicy(prob, policy(), true));
126            var problemName = prob.GetType().Name;
127            var policyName = policy().ToString();
128            double bestQ; int itersToBest;
129            RunSolver(solver, problemName, policyName, 1.0, maxIterations, maxLen, out bestQ, out itersToBest);
130            sumBestQ += bestQ;
131            sumItersToBest += itersToBest;
132            if (bestQ.IsAlmost(1.0)) fractionSolved += 1.0 / nReps;
133          }
134        }
135        // Assert.AreEqual(0.85, fractionSolved, 1E-6);
136        // Assert.AreEqual(0.99438202247191, sumBestQ / nReps, 1E-6);
137        // Assert.AreEqual(5461.7, sumItersToBest / (double)nReps, 1E-6);
138      }
[12025]139    }
[12014]140
[12025]141
142    [TestMethod]
143    [Timeout(1000 * 60 * 60 * 12)] // 12 hours
144    // this configuration worked especially well in the experiments
145    public void TestPoly10WithOutConstantOpt() {
146      CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
147
148      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
149      {
150        (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionPoly10Problem(),
151      };
152
153      var maxSizes = new int[] { 23 }; 
154      int nReps = 20;
155      int maxIterations = 100000;
156      foreach (var instanceFactory in instanceFactories) {
157        var sumBestQ = 0.0;
158        var sumItersToBest = 0;
159        double fractionSolved = 0.0;
160        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, maxSizes)) {
161          var prob = conf.Problem;
162          var maxLen = conf.MaxSize;
163          var rand = new Random(conf.RandSeed);
164
165          var solver = new SequentialSearch(prob, maxLen, rand, 0,
166            new GenericFunctionApproximationGrammarPolicy(prob, true));
167
168          var problemName = prob.GetType().Name;
169          double bestQ; int itersToBest;
170          RunSolver(solver, problemName, string.Empty, 1.0, maxIterations, maxLen, out bestQ, out itersToBest);
171          sumBestQ += bestQ;
172          sumItersToBest += itersToBest;
173          if (bestQ.IsAlmost(1.0)) fractionSolved += 1.0 / nReps;
174        }
175        // Assert.AreEqual(0.85, fractionSolved, 1E-6);
176        // Assert.AreEqual(0.99438202247191, sumBestQ / nReps, 1E-6);
177        // Assert.AreEqual(5461.7, sumItersToBest / (double)nReps, 1E-6);
178      }
[12014]179    }
180
[12025]181    [TestMethod]
182    [Timeout(1000 * 60 * 60 * 12)] // 12 hours
183    // this configuration worked especially well in the experiments
184    public void TestPoly10WithConstantOpt() {
185      CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
186
187      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
188      {
189        (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Poly-10", true ),
190      };
191
192      var maxSizes = new int[] { 23 }; 
193      int nReps = 20;
194      int maxIterations = 100000;
195      foreach (var instanceFactory in instanceFactories) {
196        var sumBestQ = 0.0;
197        var sumItersToBest = 0;
198        double fractionSolved = 0.0;
199        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, maxSizes)) {
200          var prob = conf.Problem;
201          var maxLen = conf.MaxSize;
202          var rand = new Random(conf.RandSeed);
203
204          var solver = new SequentialSearch(prob, maxLen, rand, 0,
205            new GenericFunctionApproximationGrammarPolicy(prob, true));
206
207          var problemName = prob.GetType().Name;
208          double bestQ; int itersToBest;
209          RunSolver(solver, problemName, string.Empty, 1.0, maxIterations, maxLen, out bestQ, out itersToBest);
210          sumBestQ += bestQ;
211          sumItersToBest += itersToBest;
212          if (bestQ.IsAlmost(1.0)) fractionSolved += 1.0 / nReps;
213        }
214        // Assert.AreEqual(0.85, fractionSolved, 1E-6);
215        // Assert.AreEqual(0.99438202247191, sumBestQ / nReps, 1E-6);
216        // Assert.AreEqual(5461.7, sumItersToBest / (double)nReps, 1E-6);
217      }
218    }
219
[12014]220    private IEnumerable<Configuration> GenerateConfigurations(Func<int, ISymbolicExpressionTreeProblem> problemFactory,
221     int nReps,
222     IEnumerable<int> maxSizes
223     ) {
224      var seedRand = new Random(randSeed);
225      // the problem seed is the same for all configuratons
226      // this guarantees that we solve the _same_ problem each time
227      // with different solvers and multiple repetitions
228      var problemSeed = randSeed;
229      for (int i = 0; i < nReps; i++) {
230        // in each repetition use the same random seed for all solver configuratons
231        // do nReps with different seeds for each configuration
232        var solverSeed = seedRand.Next();
233        foreach (var maxSize in maxSizes) {
234          yield return new Configuration {
235            MaxSize = maxSize,
236            Problem = problemFactory(problemSeed),
237            RandSeed = solverSeed
238          };
239        }
240      }
241    }
242
243
244
245
246    private static void RunSolver(ISolver solver, string problemName, string policyName, double bestKnownQuality, int maxIters, int maxSize,
247      out double bestQ, out int itersToBest) {
248      int iterations = 0;
249      var globalStatistics = new SentenceSetStatistics(bestKnownQuality);
250      var solverName = solver.GetType().Name;
251      double bestQuality = double.NegativeInfinity;
252      int iterationsToBest = -1;
253      solver.SolutionEvaluated += (sentence, quality) => {
254        iterations++;
255        globalStatistics.AddSentence(sentence, quality);
256        if (quality > bestQuality) {
257          bestQuality = quality;
258          iterationsToBest = iterations;
259        }
260        if (iterations % 1000 == 0) {
261          Console.WriteLine("\"{0,25}\" \"{1,25}\" {2} \"{3,25}\" {4}", solverName, policyName, maxSize, problemName, globalStatistics);
262        }
263      };
264
265
266      solver.Run(maxIters);
267
268      bestQ = bestQuality;
269      itersToBest = iterationsToBest;
270    }
271  }
272}
Note: See TracBrowser for help on using the repository browser.