[12014] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Globalization;
|
---|
| 4 | using System.Linq;
|
---|
| 5 | using System.Text;
|
---|
| 6 | using System.Threading.Tasks;
|
---|
| 7 | using HeuristicLab.Algorithms.Bandits;
|
---|
| 8 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
| 9 | using HeuristicLab.Algorithms.Bandits.GrammarPolicies;
|
---|
| 10 | using HeuristicLab.Algorithms.Bandits.Models;
|
---|
| 11 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
| 12 | using HeuristicLab.Common;
|
---|
[12025] | 13 | using HeuristicLab.Problems.GrammaticalOptimization.SymbReg;
|
---|
[12014] | 14 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 15 | using RandomPolicy = HeuristicLab.Algorithms.Bandits.BanditPolicies.RandomPolicy;
|
---|
| 16 |
|
---|
| 17 | namespace HeuristicLab.Problems.GrammaticalOptimization.Test {
|
---|
| 18 | [TestClass]
|
---|
| 19 | public class TestTunedSettings {
|
---|
| 20 | private const int randSeed = 31415;
|
---|
| 21 | internal class Configuration {
|
---|
| 22 | public IProblem Problem;
|
---|
| 23 | public int MaxSize;
|
---|
| 24 | public int RandSeed;
|
---|
| 25 |
|
---|
| 26 | public override string ToString() {
|
---|
| 27 | return string.Format("{0} {1} {2}", RandSeed, Problem, MaxSize);
|
---|
| 28 | }
|
---|
| 29 | }
|
---|
| 30 | [TestMethod]
|
---|
[12025] | 31 | [Timeout(1000 * 60 * 60 * 12)] // 12 hours
|
---|
[12014] | 32 | // this configuration worked especially well in the experiments
|
---|
[12025] | 33 | public void TestAllPoliciesArtificialAnt() {
|
---|
[12014] | 34 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
| 35 |
|
---|
| 36 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 37 | {
|
---|
| 38 | (randSeed) => (ISymbolicExpressionTreeProblem)new SantaFeAntProblem(),
|
---|
| 39 | };
|
---|
| 40 |
|
---|
| 41 | var policyFactories = new Func<IBanditPolicy>[]
|
---|
| 42 | {
|
---|
| 43 | () => new RandomPolicy(),
|
---|
[12025] | 44 | () => new ActiveLearningPolicy(),
|
---|
[12014] | 45 | () => new EpsGreedyPolicy(0.01, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
| 46 | () => new EpsGreedyPolicy(0.05, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
| 47 | () => new EpsGreedyPolicy(0.1, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
| 48 | () => new EpsGreedyPolicy(0.2, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
| 49 | //() => new GaussianThompsonSamplingPolicy(),
|
---|
| 50 | () => new GaussianThompsonSamplingPolicy(true),
|
---|
| 51 | () => new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 10, 1)),
|
---|
| 52 | () => new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 10, 1, 1)),
|
---|
| 53 | //() => new BernoulliThompsonSamplingPolicy(),
|
---|
| 54 | () => new GenericThompsonSamplingPolicy(new BernoulliModel(1, 1)),
|
---|
| 55 | () => new EpsGreedyPolicy(0.01),
|
---|
| 56 | () => new EpsGreedyPolicy(0.05),
|
---|
| 57 | () => new EpsGreedyPolicy(0.1),
|
---|
| 58 | () => new EpsGreedyPolicy(0.2),
|
---|
| 59 | () => new EpsGreedyPolicy(0.5),
|
---|
| 60 | () => new UCTPolicy(0.01),
|
---|
| 61 | () => new UCTPolicy(0.05),
|
---|
| 62 | () => new UCTPolicy(0.1),
|
---|
| 63 | () => new UCTPolicy(0.5),
|
---|
| 64 | () => new UCTPolicy(1),
|
---|
| 65 | () => new UCTPolicy(2),
|
---|
| 66 | () => new UCTPolicy( 5),
|
---|
| 67 | () => new UCTPolicy( 10),
|
---|
| 68 | () => new ModifiedUCTPolicy(0.01),
|
---|
| 69 | () => new ModifiedUCTPolicy(0.05),
|
---|
| 70 | () => new ModifiedUCTPolicy(0.1),
|
---|
| 71 | () => new ModifiedUCTPolicy(0.5),
|
---|
| 72 | () => new ModifiedUCTPolicy(1),
|
---|
| 73 | () => new ModifiedUCTPolicy(2),
|
---|
| 74 | () => new ModifiedUCTPolicy( 5),
|
---|
| 75 | () => new ModifiedUCTPolicy( 10),
|
---|
| 76 | () => new UCB1Policy(),
|
---|
| 77 | () => new UCB1TunedPolicy(),
|
---|
| 78 | () => new UCBNormalPolicy(),
|
---|
| 79 | () => new BoltzmannExplorationPolicy(1),
|
---|
| 80 | () => new BoltzmannExplorationPolicy(10),
|
---|
| 81 | () => new BoltzmannExplorationPolicy(20),
|
---|
| 82 | () => new BoltzmannExplorationPolicy(100),
|
---|
| 83 | () => new BoltzmannExplorationPolicy(200),
|
---|
| 84 | () => new BoltzmannExplorationPolicy(500),
|
---|
[12025] | 85 | () => new ChernoffIntervalEstimationPolicy( 0.01),
|
---|
| 86 | () => new ChernoffIntervalEstimationPolicy( 0.05),
|
---|
| 87 | () => new ChernoffIntervalEstimationPolicy( 0.1),
|
---|
| 88 | () => new ChernoffIntervalEstimationPolicy( 0.2),
|
---|
[12014] | 89 | () => new ThresholdAscentPolicy(5, 0.01),
|
---|
| 90 | () => new ThresholdAscentPolicy(5, 0.05),
|
---|
| 91 | () => new ThresholdAscentPolicy(5, 0.1),
|
---|
| 92 | () => new ThresholdAscentPolicy(5, 0.2),
|
---|
| 93 | () => new ThresholdAscentPolicy(10, 0.01),
|
---|
| 94 | () => new ThresholdAscentPolicy(10, 0.05),
|
---|
| 95 | () => new ThresholdAscentPolicy(10, 0.1),
|
---|
| 96 | () => new ThresholdAscentPolicy(10, 0.2),
|
---|
| 97 | () => new ThresholdAscentPolicy(50, 0.01),
|
---|
| 98 | () => new ThresholdAscentPolicy(50, 0.05),
|
---|
| 99 | () => new ThresholdAscentPolicy(50, 0.1),
|
---|
| 100 | () => new ThresholdAscentPolicy(50, 0.2),
|
---|
| 101 | () => new ThresholdAscentPolicy(100, 0.01),
|
---|
| 102 | () => new ThresholdAscentPolicy(100, 0.05),
|
---|
| 103 | () => new ThresholdAscentPolicy(100, 0.1),
|
---|
| 104 | () => new ThresholdAscentPolicy(100, 0.2),
|
---|
| 105 | () => new ThresholdAscentPolicy(500, 0.01),
|
---|
| 106 | () => new ThresholdAscentPolicy(500, 0.05),
|
---|
| 107 | () => new ThresholdAscentPolicy(500, 0.1),
|
---|
| 108 | () => new ThresholdAscentPolicy(500, 0.2),
|
---|
| 109 | () => new ThresholdAscentPolicy(5000, 0.01),
|
---|
| 110 | () => new ThresholdAscentPolicy(10000, 0.01),
|
---|
| 111 | };
|
---|
| 112 | var maxSizes = new int[] { 17 }; // necessary size for ant programm
|
---|
| 113 | int nReps = 20;
|
---|
[12025] | 114 | int maxIterations = 100000;
|
---|
[12014] | 115 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 116 | var sumBestQ = 0.0;
|
---|
| 117 | var sumItersToBest = 0;
|
---|
| 118 | double fractionSolved = 0.0;
|
---|
| 119 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, maxSizes)) {
|
---|
| 120 | foreach (var policy in policyFactories) {
|
---|
| 121 | var prob = conf.Problem;
|
---|
| 122 | var maxLen = conf.MaxSize;
|
---|
| 123 | var rand = new Random(conf.RandSeed);
|
---|
| 124 |
|
---|
| 125 | var solver = new SequentialSearch(prob, maxLen, rand, 0, new GenericGrammarPolicy(prob, policy(), true));
|
---|
| 126 | var problemName = prob.GetType().Name;
|
---|
| 127 | var policyName = policy().ToString();
|
---|
| 128 | double bestQ; int itersToBest;
|
---|
| 129 | RunSolver(solver, problemName, policyName, 1.0, maxIterations, maxLen, out bestQ, out itersToBest);
|
---|
| 130 | sumBestQ += bestQ;
|
---|
| 131 | sumItersToBest += itersToBest;
|
---|
| 132 | if (bestQ.IsAlmost(1.0)) fractionSolved += 1.0 / nReps;
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 | // Assert.AreEqual(0.85, fractionSolved, 1E-6);
|
---|
| 136 | // Assert.AreEqual(0.99438202247191, sumBestQ / nReps, 1E-6);
|
---|
| 137 | // Assert.AreEqual(5461.7, sumItersToBest / (double)nReps, 1E-6);
|
---|
| 138 | }
|
---|
[12025] | 139 | }
|
---|
[12014] | 140 |
|
---|
[12025] | 141 |
|
---|
| 142 | [TestMethod]
|
---|
| 143 | [Timeout(1000 * 60 * 60 * 12)] // 12 hours
|
---|
| 144 | // this configuration worked especially well in the experiments
|
---|
| 145 | public void TestPoly10WithOutConstantOpt() {
|
---|
| 146 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
| 147 |
|
---|
| 148 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 149 | {
|
---|
| 150 | (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionPoly10Problem(),
|
---|
| 151 | };
|
---|
| 152 |
|
---|
| 153 | var maxSizes = new int[] { 23 };
|
---|
| 154 | int nReps = 20;
|
---|
| 155 | int maxIterations = 100000;
|
---|
| 156 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 157 | var sumBestQ = 0.0;
|
---|
| 158 | var sumItersToBest = 0;
|
---|
| 159 | double fractionSolved = 0.0;
|
---|
| 160 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, maxSizes)) {
|
---|
| 161 | var prob = conf.Problem;
|
---|
| 162 | var maxLen = conf.MaxSize;
|
---|
| 163 | var rand = new Random(conf.RandSeed);
|
---|
| 164 |
|
---|
| 165 | var solver = new SequentialSearch(prob, maxLen, rand, 0,
|
---|
| 166 | new GenericFunctionApproximationGrammarPolicy(prob, true));
|
---|
| 167 |
|
---|
| 168 | var problemName = prob.GetType().Name;
|
---|
| 169 | double bestQ; int itersToBest;
|
---|
| 170 | RunSolver(solver, problemName, string.Empty, 1.0, maxIterations, maxLen, out bestQ, out itersToBest);
|
---|
| 171 | sumBestQ += bestQ;
|
---|
| 172 | sumItersToBest += itersToBest;
|
---|
| 173 | if (bestQ.IsAlmost(1.0)) fractionSolved += 1.0 / nReps;
|
---|
| 174 | }
|
---|
| 175 | // Assert.AreEqual(0.85, fractionSolved, 1E-6);
|
---|
| 176 | // Assert.AreEqual(0.99438202247191, sumBestQ / nReps, 1E-6);
|
---|
| 177 | // Assert.AreEqual(5461.7, sumItersToBest / (double)nReps, 1E-6);
|
---|
| 178 | }
|
---|
[12014] | 179 | }
|
---|
| 180 |
|
---|
[12025] | 181 | [TestMethod]
|
---|
| 182 | [Timeout(1000 * 60 * 60 * 12)] // 12 hours
|
---|
| 183 | // this configuration worked especially well in the experiments
|
---|
| 184 | public void TestPoly10WithConstantOpt() {
|
---|
| 185 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
| 186 |
|
---|
| 187 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 188 | {
|
---|
| 189 | (randSeed) => (ISymbolicExpressionTreeProblem)new SymbolicRegressionProblem(new Random(randSeed), "Poly-10", true ),
|
---|
| 190 | };
|
---|
| 191 |
|
---|
| 192 | var maxSizes = new int[] { 23 };
|
---|
| 193 | int nReps = 20;
|
---|
| 194 | int maxIterations = 100000;
|
---|
| 195 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 196 | var sumBestQ = 0.0;
|
---|
| 197 | var sumItersToBest = 0;
|
---|
| 198 | double fractionSolved = 0.0;
|
---|
| 199 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, maxSizes)) {
|
---|
| 200 | var prob = conf.Problem;
|
---|
| 201 | var maxLen = conf.MaxSize;
|
---|
| 202 | var rand = new Random(conf.RandSeed);
|
---|
| 203 |
|
---|
| 204 | var solver = new SequentialSearch(prob, maxLen, rand, 0,
|
---|
| 205 | new GenericFunctionApproximationGrammarPolicy(prob, true));
|
---|
| 206 |
|
---|
| 207 | var problemName = prob.GetType().Name;
|
---|
| 208 | double bestQ; int itersToBest;
|
---|
| 209 | RunSolver(solver, problemName, string.Empty, 1.0, maxIterations, maxLen, out bestQ, out itersToBest);
|
---|
| 210 | sumBestQ += bestQ;
|
---|
| 211 | sumItersToBest += itersToBest;
|
---|
| 212 | if (bestQ.IsAlmost(1.0)) fractionSolved += 1.0 / nReps;
|
---|
| 213 | }
|
---|
| 214 | // Assert.AreEqual(0.85, fractionSolved, 1E-6);
|
---|
| 215 | // Assert.AreEqual(0.99438202247191, sumBestQ / nReps, 1E-6);
|
---|
| 216 | // Assert.AreEqual(5461.7, sumItersToBest / (double)nReps, 1E-6);
|
---|
| 217 | }
|
---|
| 218 | }
|
---|
| 219 |
|
---|
[12014] | 220 | private IEnumerable<Configuration> GenerateConfigurations(Func<int, ISymbolicExpressionTreeProblem> problemFactory,
|
---|
| 221 | int nReps,
|
---|
| 222 | IEnumerable<int> maxSizes
|
---|
| 223 | ) {
|
---|
| 224 | var seedRand = new Random(randSeed);
|
---|
| 225 | // the problem seed is the same for all configuratons
|
---|
| 226 | // this guarantees that we solve the _same_ problem each time
|
---|
| 227 | // with different solvers and multiple repetitions
|
---|
| 228 | var problemSeed = randSeed;
|
---|
| 229 | for (int i = 0; i < nReps; i++) {
|
---|
| 230 | // in each repetition use the same random seed for all solver configuratons
|
---|
| 231 | // do nReps with different seeds for each configuration
|
---|
| 232 | var solverSeed = seedRand.Next();
|
---|
| 233 | foreach (var maxSize in maxSizes) {
|
---|
| 234 | yield return new Configuration {
|
---|
| 235 | MaxSize = maxSize,
|
---|
| 236 | Problem = problemFactory(problemSeed),
|
---|
| 237 | RandSeed = solverSeed
|
---|
| 238 | };
|
---|
| 239 | }
|
---|
| 240 | }
|
---|
| 241 | }
|
---|
| 242 |
|
---|
| 243 |
|
---|
| 244 |
|
---|
| 245 |
|
---|
| 246 | private static void RunSolver(ISolver solver, string problemName, string policyName, double bestKnownQuality, int maxIters, int maxSize,
|
---|
| 247 | out double bestQ, out int itersToBest) {
|
---|
| 248 | int iterations = 0;
|
---|
| 249 | var globalStatistics = new SentenceSetStatistics(bestKnownQuality);
|
---|
| 250 | var solverName = solver.GetType().Name;
|
---|
| 251 | double bestQuality = double.NegativeInfinity;
|
---|
| 252 | int iterationsToBest = -1;
|
---|
| 253 | solver.SolutionEvaluated += (sentence, quality) => {
|
---|
| 254 | iterations++;
|
---|
| 255 | globalStatistics.AddSentence(sentence, quality);
|
---|
| 256 | if (quality > bestQuality) {
|
---|
| 257 | bestQuality = quality;
|
---|
| 258 | iterationsToBest = iterations;
|
---|
| 259 | }
|
---|
| 260 | if (iterations % 1000 == 0) {
|
---|
| 261 | Console.WriteLine("\"{0,25}\" \"{1,25}\" {2} \"{3,25}\" {4}", solverName, policyName, maxSize, problemName, globalStatistics);
|
---|
| 262 | }
|
---|
| 263 | };
|
---|
| 264 |
|
---|
| 265 |
|
---|
| 266 | solver.Run(maxIters);
|
---|
| 267 |
|
---|
| 268 | bestQ = bestQuality;
|
---|
| 269 | itersToBest = iterationsToBest;
|
---|
| 270 | }
|
---|
| 271 | }
|
---|
| 272 | }
|
---|