1 | using System;
|
---|
2 | using System.Linq;
|
---|
3 | using System.Collections.Generic;
|
---|
4 | using System.Globalization;
|
---|
5 | using HeuristicLab.Algorithms.Bandits;
|
---|
6 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
7 | using HeuristicLab.Algorithms.Bandits.Models;
|
---|
8 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
9 |
|
---|
10 | namespace HeuristicLab.Problems.GrammaticalOptimization.Test {
|
---|
11 | [TestClass]
|
---|
12 | public class TestBanditPolicies {
|
---|
13 | [TestMethod]
|
---|
14 | public void ComparePoliciesForGaussianUnknownVarianceBandit() {
|
---|
15 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
16 | var randSeed = 31415;
|
---|
17 | var nArms = 20;
|
---|
18 |
|
---|
19 | // ThresholdAscent only works for rewards in [0..1] so far
|
---|
20 |
|
---|
21 | Console.WriteLine("Thompson (Gaussian est variance)"); TestPolicyGaussianUnknownVariance(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianModel(0, 1, 1, 1)));
|
---|
22 | Console.WriteLine("Thompson (Gaussian fixed variance)"); TestPolicyGaussianUnknownVariance(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianModel(0, 1, 0.1)));
|
---|
23 | Console.WriteLine("GaussianThompson (compat)"); TestPolicyGaussianUnknownVariance(randSeed, nArms, new GaussianThompsonSamplingPolicy(true));
|
---|
24 | Console.WriteLine("GaussianThompson"); TestPolicyGaussianUnknownVariance(randSeed, nArms, new GaussianThompsonSamplingPolicy());
|
---|
25 | Console.WriteLine("UCBNormal"); TestPolicyGaussianUnknownVariance(randSeed, nArms, new UCBNormalPolicy());
|
---|
26 | Console.WriteLine("Random"); TestPolicyGaussianUnknownVariance(randSeed, nArms, new RandomPolicy());
|
---|
27 |
|
---|
28 | }
|
---|
29 |
|
---|
30 |
|
---|
31 | [TestMethod]
|
---|
32 | public void ComparePoliciesForBernoulliBandit() {
|
---|
33 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
34 | var randSeed = 31415;
|
---|
35 | var nArms = 20;
|
---|
36 | //Console.WriteLine("Exp3 (gamma=0.01)");
|
---|
37 | //TestPolicyBernoulli(globalRand, nArms, new Exp3Policy(new Random(seedForPolicy), nArms, 1));
|
---|
38 | //Console.WriteLine("Exp3 (gamma=0.05)");
|
---|
39 | //estPolicyBernoulli(globalRand, nArms, new Exp3Policy(new Random(seedForPolicy), nArms, 1));
|
---|
40 | Console.WriteLine("Thompson (Bernoulli)"); TestPolicyBernoulli(randSeed, nArms, new BernoulliThompsonSamplingPolicy());
|
---|
41 | Console.WriteLine("Generic Thompson (Bernoulli)"); TestPolicyBernoulli(randSeed, nArms, new GenericThompsonSamplingPolicy(new BernoulliModel()));
|
---|
42 | Console.WriteLine("Random");
|
---|
43 | TestPolicyBernoulli(randSeed, nArms, new RandomPolicy());
|
---|
44 | Console.WriteLine("UCB1");
|
---|
45 | TestPolicyBernoulli(randSeed, nArms, new UCB1Policy());
|
---|
46 | Console.WriteLine("UCB1Tuned");
|
---|
47 | TestPolicyBernoulli(randSeed, nArms, new UCB1TunedPolicy());
|
---|
48 | Console.WriteLine("UCB1Normal");
|
---|
49 | TestPolicyBernoulli(randSeed, nArms, new UCBNormalPolicy());
|
---|
50 | Console.WriteLine("Eps(0.01)");
|
---|
51 | TestPolicyBernoulli(randSeed, nArms, new EpsGreedyPolicy(0.01));
|
---|
52 | Console.WriteLine("Eps(0.05)");
|
---|
53 | TestPolicyBernoulli(randSeed, nArms, new EpsGreedyPolicy(0.05));
|
---|
54 | //Console.WriteLine("Eps(0.1)");
|
---|
55 | //TestPolicyBernoulli(randSeed, nArms, new EpsGreedyPolicy(0.1));
|
---|
56 | //Console.WriteLine("Eps(0.2)");
|
---|
57 | //TestPolicyBernoulli(randSeed, nArms, new EpsGreedyPolicy(0.2));
|
---|
58 | //Console.WriteLine("Eps(0.5)");
|
---|
59 | //TestPolicyBernoulli(randSeed, nArms, new EpsGreedyPolicy(0.5));
|
---|
60 | Console.WriteLine("UCT(0.1)"); TestPolicyBernoulli(randSeed, nArms, new UCTPolicy(0.1));
|
---|
61 | Console.WriteLine("UCT(0.5)"); TestPolicyBernoulli(randSeed, nArms, new UCTPolicy(0.5));
|
---|
62 | Console.WriteLine("UCT(1) "); TestPolicyBernoulli(randSeed, nArms, new UCTPolicy(1));
|
---|
63 | Console.WriteLine("UCT(2) "); TestPolicyBernoulli(randSeed, nArms, new UCTPolicy(2));
|
---|
64 | Console.WriteLine("UCT(5) "); TestPolicyBernoulli(randSeed, nArms, new UCTPolicy(5));
|
---|
65 | Console.WriteLine("BoltzmannExploration(0.1)"); TestPolicyBernoulli(randSeed, nArms, new BoltzmannExplorationPolicy(0.1));
|
---|
66 | Console.WriteLine("BoltzmannExploration(0.5)"); TestPolicyBernoulli(randSeed, nArms, new BoltzmannExplorationPolicy(0.5));
|
---|
67 | Console.WriteLine("BoltzmannExploration(1) "); TestPolicyBernoulli(randSeed, nArms, new BoltzmannExplorationPolicy(1));
|
---|
68 | Console.WriteLine("BoltzmannExploration(10) "); TestPolicyBernoulli(randSeed, nArms, new BoltzmannExplorationPolicy(10));
|
---|
69 | Console.WriteLine("BoltzmannExploration(100)"); TestPolicyBernoulli(randSeed, nArms, new BoltzmannExplorationPolicy(100));
|
---|
70 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.01)"); TestPolicyBernoulli(randSeed, nArms, new ChernoffIntervalEstimationPolicy(0.01));
|
---|
71 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.05)"); TestPolicyBernoulli(randSeed, nArms, new ChernoffIntervalEstimationPolicy(0.05));
|
---|
72 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.1) "); TestPolicyBernoulli(randSeed, nArms, new ChernoffIntervalEstimationPolicy(0.1));
|
---|
73 |
|
---|
74 | // not applicable to bernoulli rewards
|
---|
75 | //Console.WriteLine("ThresholdAscent(10, 0.01) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 10, 0.01));
|
---|
76 | //Console.WriteLine("ThresholdAscent(10, 0.05) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 10, 0.05));
|
---|
77 | //Console.WriteLine("ThresholdAscent(10, 0.1) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 10, 0.1));
|
---|
78 | //Console.WriteLine("ThresholdAscent(100, 0.01) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 100, 0.01));
|
---|
79 | //Console.WriteLine("ThresholdAscent(100, 0.05) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 100, 0.05));
|
---|
80 | //Console.WriteLine("ThresholdAscent(100, 0.1) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 100, 0.1));
|
---|
81 | //Console.WriteLine("ThresholdAscent(1000, 0.01)"); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.01));
|
---|
82 | //Console.WriteLine("ThresholdAscent(1000, 0.05)"); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.05));
|
---|
83 | //Console.WriteLine("ThresholdAscent(1000, 0.1) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.1));
|
---|
84 | }
|
---|
85 |
|
---|
86 | [TestMethod]
|
---|
87 | public void ComparePoliciesForGaussianBandit() {
|
---|
88 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
89 |
|
---|
90 | var randSeed = 31415;
|
---|
91 | var nArms = 20;
|
---|
92 | Console.WriteLine("Threshold Ascent (20)"); TestPolicyGaussian(randSeed, nArms, new ThresholdAscentPolicy(20, 0.01));
|
---|
93 | Console.WriteLine("Threshold Ascent (100)"); TestPolicyGaussian(randSeed, nArms, new ThresholdAscentPolicy(100, 0.01));
|
---|
94 | Console.WriteLine("Threshold Ascent (500)"); TestPolicyGaussian(randSeed, nArms, new ThresholdAscentPolicy(500, 0.01));
|
---|
95 | Console.WriteLine("Threshold Ascent (1000)"); TestPolicyGaussian(randSeed, nArms, new ThresholdAscentPolicy(1000, 0.01));
|
---|
96 | Console.WriteLine("Generic Thompson (Gaussian fixed var)"); TestPolicyGaussian(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 1)));
|
---|
97 | Console.WriteLine("Generic Thompson (Gaussian unknown var)"); TestPolicyGaussian(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 1, 1, 1)));
|
---|
98 | Console.WriteLine("Thompson (Gaussian orig)"); TestPolicyGaussian(randSeed, nArms, new GaussianThompsonSamplingPolicy(true));
|
---|
99 | Console.WriteLine("Thompson (Gaussian new)"); TestPolicyGaussian(randSeed, nArms, new GaussianThompsonSamplingPolicy());
|
---|
100 |
|
---|
101 | /*
|
---|
102 | Console.WriteLine("Random"); TestPolicyNormal(randSeed, nArms, new RandomPolicy(new Random(seedForPolicy), nArms));
|
---|
103 | Console.WriteLine("UCB1"); TestPolicyNormal(randSeed, nArms, new UCB1Policy(nArms));
|
---|
104 | Console.WriteLine("UCB1Tuned"); TestPolicyNormal(randSeed, nArms, new UCB1TunedPolicy(nArms));
|
---|
105 | Console.WriteLine("UCB1Normal"); TestPolicyNormal(randSeed, nArms, new UCBNormalPolicy(nArms));
|
---|
106 | //Console.WriteLine("Exp3 (gamma=0.01)");
|
---|
107 | //TestPolicyNormal(randSeed, nArms, new Exp3Policy(new Random(seedForPolicy), nArms, 0.01));
|
---|
108 | //Console.WriteLine("Exp3 (gamma=0.05)");
|
---|
109 | //TestPolicyNormal(randSeed, nArms, new Exp3Policy(new Random(seedForPolicy), nArms, 0.05));
|
---|
110 | Console.WriteLine("Eps(0.01)"); TestPolicyNormal(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.01));
|
---|
111 | Console.WriteLine("Eps(0.05)"); TestPolicyNormal(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.05));
|
---|
112 | //Console.WriteLine("Eps(0.1)");
|
---|
113 | //TestPolicyNormal(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.1));
|
---|
114 | //Console.WriteLine("Eps(0.2)");
|
---|
115 | //TestPolicyNormal(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.2));
|
---|
116 | //Console.WriteLine("Eps(0.5)");
|
---|
117 | //TestPolicyNormal(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.5));
|
---|
118 | Console.WriteLine("UCT(0.1)"); TestPolicyNormal(randSeed, nArms, new UCTPolicy(nArms, 0.1));
|
---|
119 | Console.WriteLine("UCT(0.5)"); TestPolicyNormal(randSeed, nArms, new UCTPolicy(nArms, 0.5));
|
---|
120 | Console.WriteLine("UCT(1) "); TestPolicyNormal(randSeed, nArms, new UCTPolicy(nArms, 1));
|
---|
121 | Console.WriteLine("UCT(2) "); TestPolicyNormal(randSeed, nArms, new UCTPolicy(nArms, 2));
|
---|
122 | Console.WriteLine("UCT(5) "); TestPolicyNormal(randSeed, nArms, new UCTPolicy(nArms, 5));
|
---|
123 | Console.WriteLine("BoltzmannExploration(0.1)"); TestPolicyNormal(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 0.1));
|
---|
124 | Console.WriteLine("BoltzmannExploration(0.5)"); TestPolicyNormal(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 0.5));
|
---|
125 | Console.WriteLine("BoltzmannExploration(1) "); TestPolicyNormal(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 1));
|
---|
126 | Console.WriteLine("BoltzmannExploration(10) "); TestPolicyNormal(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 10));
|
---|
127 | Console.WriteLine("BoltzmannExploration(100)"); TestPolicyNormal(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 100));
|
---|
128 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.01)"); TestPolicyNormal(randSeed, nArms, new ChernoffIntervalEstimationPolicy(nArms, 0.01));
|
---|
129 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.05)"); TestPolicyNormal(randSeed, nArms, new ChernoffIntervalEstimationPolicy(nArms, 0.05));
|
---|
130 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.1) "); TestPolicyNormal(randSeed, nArms, new ChernoffIntervalEstimationPolicy(nArms, 0.1));
|
---|
131 | Console.WriteLine("ThresholdAscent(10,0.01) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 10, 0.01));
|
---|
132 | Console.WriteLine("ThresholdAscent(10,0.05) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 10, 0.05));
|
---|
133 | Console.WriteLine("ThresholdAscent(10,0.1) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 10, 0.1));
|
---|
134 | Console.WriteLine("ThresholdAscent(100,0.01) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 100, 0.01));
|
---|
135 | Console.WriteLine("ThresholdAscent(100,0.05) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 100, 0.05));
|
---|
136 | Console.WriteLine("ThresholdAscent(100,0.1) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 100, 0.1));
|
---|
137 | Console.WriteLine("ThresholdAscent(1000,0.01)"); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.01));
|
---|
138 | Console.WriteLine("ThresholdAscent(1000,0.05)"); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.05));
|
---|
139 | Console.WriteLine("ThresholdAscent(1000,0.1) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.1));
|
---|
140 | */
|
---|
141 | }
|
---|
142 |
|
---|
143 | [TestMethod]
|
---|
144 | public void ComparePoliciesForGaussianMixtureBandit() {
|
---|
145 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
146 | var randSeed = 31415;
|
---|
147 | var nArms = 20;
|
---|
148 |
|
---|
149 | Console.WriteLine("Generic Thompson (Gaussian Mixture)"); TestPolicyGaussianMixture(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianMixtureModel()));
|
---|
150 | // Console.WriteLine("Threshold Ascent (20)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(20, 0.01));
|
---|
151 | // Console.WriteLine("Threshold Ascent (100)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(100, 0.01));
|
---|
152 | // Console.WriteLine("Threshold Ascent (500)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(500, 0.01));
|
---|
153 | // Console.WriteLine("Threshold Ascent (1000)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(1000, 0.01));
|
---|
154 | // Console.WriteLine("Thompson (Gaussian orig)"); TestPolicyGaussianMixture(randSeed, nArms, new GaussianThompsonSamplingPolicy(true));
|
---|
155 | // Console.WriteLine("Thompson (Gaussian new)"); TestPolicyGaussianMixture(randSeed, nArms, new GaussianThompsonSamplingPolicy());
|
---|
156 | // Console.WriteLine("Generic Thompson (Gaussian fixed variance)"); TestPolicyGaussianMixture(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 1, 0.1)));
|
---|
157 | // Console.WriteLine("Generic Thompson (Gaussian unknown variance)"); TestPolicyGaussianMixture(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 1, 1, 1)));
|
---|
158 |
|
---|
159 | /*
|
---|
160 | Console.WriteLine("Random"); TestPolicyGaussianMixture(randSeed, nArms, new RandomPolicy(new Random(seedForPolicy), nArms));
|
---|
161 | Console.WriteLine("UCB1"); TestPolicyGaussianMixture(randSeed, nArms, new UCB1Policy(nArms));
|
---|
162 | Console.WriteLine("UCB1Tuned "); TestPolicyGaussianMixture(randSeed, nArms, new UCB1TunedPolicy(nArms));
|
---|
163 | Console.WriteLine("UCB1Normal"); TestPolicyGaussianMixture(randSeed, nArms, new UCBNormalPolicy(nArms));
|
---|
164 | Console.WriteLine("Eps(0.01) "); TestPolicyGaussianMixture(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.01));
|
---|
165 | Console.WriteLine("Eps(0.05) "); TestPolicyGaussianMixture(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.05));
|
---|
166 | Console.WriteLine("UCT(1) "); TestPolicyGaussianMixture(randSeed, nArms, new UCTPolicy(nArms, 1));
|
---|
167 | Console.WriteLine("UCT(2) "); TestPolicyGaussianMixture(randSeed, nArms, new UCTPolicy(nArms, 2));
|
---|
168 | Console.WriteLine("UCT(5) "); TestPolicyGaussianMixture(randSeed, nArms, new UCTPolicy(nArms, 5));
|
---|
169 | Console.WriteLine("BoltzmannExploration(1) "); TestPolicyGaussianMixture(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 1));
|
---|
170 | Console.WriteLine("BoltzmannExploration(10) "); TestPolicyGaussianMixture(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 10));
|
---|
171 | Console.WriteLine("BoltzmannExploration(100)"); TestPolicyGaussianMixture(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 100));
|
---|
172 |
|
---|
173 | Console.WriteLine("ThresholdAscent(10,0.01) "); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(nArms, 10, 0.01));
|
---|
174 | Console.WriteLine("ThresholdAscent(100,0.01) "); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(nArms, 100, 0.01));
|
---|
175 | Console.WriteLine("ThresholdAscent(1000,0.01)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.01));
|
---|
176 | Console.WriteLine("ThresholdAscent(10000,0.01)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(nArms, 10000, 0.01));
|
---|
177 | */
|
---|
178 | }
|
---|
179 |
|
---|
180 |
|
---|
181 | private void TestPolicyBernoulli(int randSeed, int nArms, IBanditPolicy policy) {
|
---|
182 | TestPolicy(randSeed, nArms, policy, (banditRandom, nActions) => new BernoulliBandit(banditRandom, nActions));
|
---|
183 | }
|
---|
184 | private void TestPolicyGaussian(int randSeed, int nArms, IBanditPolicy policy) {
|
---|
185 | TestPolicy(randSeed, nArms, policy, (banditRandom, nActions) => new TruncatedNormalBandit(banditRandom, nActions));
|
---|
186 | }
|
---|
187 | private void TestPolicyGaussianMixture(int randSeed, int nArms, IBanditPolicy policy) {
|
---|
188 | TestPolicy(randSeed, nArms, policy, (banditRandom, nActions) => new GaussianMixtureBandit(banditRandom, nActions));
|
---|
189 | }
|
---|
190 | private void TestPolicyGaussianUnknownVariance(int randSeed, int nArms, IBanditPolicy policy) {
|
---|
191 | TestPolicy(randSeed, nArms, policy, (banditRandom, nActions) => new GaussianBandit(banditRandom, nActions));
|
---|
192 | }
|
---|
193 |
|
---|
194 |
|
---|
195 | private void TestPolicy(int randSeed, int nArms, IBanditPolicy policy, Func<Random, int, IBandit> banditFactory) {
|
---|
196 | var maxIt = 1E5;
|
---|
197 | var reps = 10; // independent runs
|
---|
198 | var regretForIteration = new Dictionary<int, List<double>>();
|
---|
199 | var numberOfPullsOfSuboptimalArmsForExp = new Dictionary<int, double>();
|
---|
200 | var numberOfPullsOfSuboptimalArmsForMax = new Dictionary<int, double>();
|
---|
201 | var globalRandom = new Random(randSeed);
|
---|
202 | var banditRandom = new Random(globalRandom.Next()); // bandits must produce the same rewards for each test
|
---|
203 | var policyRandom = new Random(globalRandom.Next());
|
---|
204 |
|
---|
205 | // calculate statistics
|
---|
206 | for (int r = 0; r < reps; r++) {
|
---|
207 | var nextLogStep = 1;
|
---|
208 | var b = banditFactory(banditRandom, nArms);
|
---|
209 | var totalRegret = 0.0;
|
---|
210 | var totalPullsOfSuboptimalArmsExp = 0.0;
|
---|
211 | var totalPullsOfSuboptimalArmsMax = 0.0;
|
---|
212 | var actionInfos = Enumerable.Range(0, nArms).Select(_ => policy.CreateActionInfo()).ToArray();
|
---|
213 | for (int i = 0; i <= maxIt; i++) {
|
---|
214 | var selectedAction = policy.SelectAction(policyRandom, actionInfos);
|
---|
215 | var reward = b.Pull(selectedAction);
|
---|
216 | actionInfos[selectedAction].UpdateReward(reward);
|
---|
217 |
|
---|
218 | // collect stats
|
---|
219 | if (selectedAction != b.OptimalExpectedRewardArm) totalPullsOfSuboptimalArmsExp++;
|
---|
220 | if (selectedAction != b.OptimalMaximalRewardArm) totalPullsOfSuboptimalArmsMax++;
|
---|
221 | totalRegret += b.OptimalExpectedReward - reward;
|
---|
222 |
|
---|
223 | if (i == nextLogStep) {
|
---|
224 | nextLogStep *= 2;
|
---|
225 | if (!regretForIteration.ContainsKey(i)) {
|
---|
226 | regretForIteration.Add(i, new List<double>());
|
---|
227 | }
|
---|
228 | regretForIteration[i].Add(totalRegret / i);
|
---|
229 |
|
---|
230 | if (!numberOfPullsOfSuboptimalArmsForExp.ContainsKey(i)) {
|
---|
231 | numberOfPullsOfSuboptimalArmsForExp.Add(i, 0.0);
|
---|
232 | }
|
---|
233 | numberOfPullsOfSuboptimalArmsForExp[i] += totalPullsOfSuboptimalArmsExp;
|
---|
234 |
|
---|
235 | if (!numberOfPullsOfSuboptimalArmsForMax.ContainsKey(i)) {
|
---|
236 | numberOfPullsOfSuboptimalArmsForMax.Add(i, 0.0);
|
---|
237 | }
|
---|
238 | numberOfPullsOfSuboptimalArmsForMax[i] += totalPullsOfSuboptimalArmsMax;
|
---|
239 | }
|
---|
240 | }
|
---|
241 | }
|
---|
242 | // print
|
---|
243 | foreach (var p in regretForIteration.Keys.OrderBy(k => k)) {
|
---|
244 | Console.WriteLine("iter {0,8} regret avg {1,7:F5} min {2,7:F5} max {3,7:F5} suboptimal pulls (exp) {4,7:F2} suboptimal pulls (max) {5,7:F2}",
|
---|
245 | p,
|
---|
246 | regretForIteration[p].Average(),
|
---|
247 | regretForIteration[p].Min(),
|
---|
248 | regretForIteration[p].Max(),
|
---|
249 | numberOfPullsOfSuboptimalArmsForExp[p] / (double)reps,
|
---|
250 | numberOfPullsOfSuboptimalArmsForMax[p] / (double)reps
|
---|
251 | );
|
---|
252 | }
|
---|
253 | }
|
---|
254 |
|
---|
255 | }
|
---|
256 | }
|
---|