[11981] | 1 | using System;
|
---|
| 2 | using System.Collections;
|
---|
| 3 | using System.Collections.Generic;
|
---|
| 4 | using HeuristicLab.Algorithms.Bandits.GrammarPolicies;
|
---|
| 5 | using HeuristicLab.Algorithms.GeneticProgramming;
|
---|
| 6 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
| 7 | using HeuristicLab.Problems.GrammaticalOptimization;
|
---|
| 8 | using HeuristicLab.Problems.GrammaticalOptimization.SymbReg;
|
---|
| 9 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 10 |
|
---|
| 11 | namespace HeuristicLab.Problems.GrammaticalOptimization.Test {
|
---|
| 12 | // only supported for Artificial Ant and Symbolic Regression up to now
|
---|
| 13 |
|
---|
| 14 | [TestClass]
|
---|
| 15 | public class RunSequentialSolverFuncApproximationExperiments {
|
---|
| 16 | private readonly static int randSeed = 31415;
|
---|
| 17 |
|
---|
| 18 | internal class Configuration {
|
---|
| 19 | public ISymbolicExpressionTreeProblem Problem;
|
---|
| 20 | public int MaxSize;
|
---|
| 21 | public int RandSeed;
|
---|
| 22 |
|
---|
| 23 | public override string ToString() {
|
---|
| 24 | return string.Format("{0} {1} {2}", RandSeed, Problem, MaxSize);
|
---|
| 25 | }
|
---|
| 26 | }
|
---|
| 27 |
|
---|
| 28 |
|
---|
| 29 | #region artificial ant
|
---|
| 30 | [TestMethod]
|
---|
| 31 | public void RunSeqSolvFuncApproxArtificialAntProblem() {
|
---|
| 32 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 33 | {
|
---|
| 34 | (randSeed) => (ISymbolicExpressionTreeProblem) new SantaFeAntProblem(),
|
---|
| 35 | };
|
---|
| 36 |
|
---|
| 37 | var maxSizes = new int[] { 17 }; // size of sequential representation is 17
|
---|
| 38 | int nReps = 20;
|
---|
| 39 | int maxIterations = 100000; // randomsearch finds the optimum almost always for 100000 evals
|
---|
| 40 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 41 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, maxSizes)) {
|
---|
| 42 | RunSeqSolvFuncApproxForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.MaxSize);
|
---|
| 43 | }
|
---|
| 44 | }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | #endregion
|
---|
| 48 |
|
---|
| 49 | #region symb-reg-poly-10
|
---|
| 50 | [TestMethod]
|
---|
| 51 | public void RunSeqSolvFuncApproxPoly10Problem() {
|
---|
| 52 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 53 | {
|
---|
| 54 | (randSeed) => (ISymbolicExpressionTreeProblem) new SymbolicRegressionPoly10Problem(),
|
---|
| 55 | };
|
---|
| 56 |
|
---|
| 57 | var maxSizes = new int[] { 23 }; // size of sequential representation is 23
|
---|
| 58 | int nReps = 20;
|
---|
| 59 | int maxIterations = 100000; // sequentialsearch should find the optimum within 100000 evals
|
---|
| 60 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 61 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, maxSizes)) {
|
---|
| 62 | RunSeqSolvFuncApproxForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.MaxSize);
|
---|
| 63 | }
|
---|
| 64 | }
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | #endregion
|
---|
| 68 |
|
---|
| 69 | #region helpers
|
---|
| 70 | private IEnumerable<Configuration> GenerateConfigurations(Func<int, ISymbolicExpressionTreeProblem> problemFactory,
|
---|
| 71 | int nReps,
|
---|
| 72 | IEnumerable<int> maxSizes
|
---|
| 73 | ) {
|
---|
| 74 | var seedRand = new Random(randSeed);
|
---|
| 75 | // the problem seed is the same for all configuratons
|
---|
| 76 | // this guarantees that we solve the _same_ problem each time
|
---|
| 77 | // with different solvers and multiple repetitions
|
---|
| 78 | var problemSeed = randSeed;
|
---|
| 79 | for (int i = 0; i < nReps; i++) {
|
---|
| 80 | // in each repetition use the same random seed for all solver configuratons
|
---|
| 81 | // do nReps with different seeds for each configuration
|
---|
| 82 | var solverSeed = seedRand.Next();
|
---|
| 83 | foreach (var maxSize in maxSizes) {
|
---|
| 84 | yield return new Configuration {
|
---|
| 85 | MaxSize = maxSize,
|
---|
| 86 | Problem = problemFactory(problemSeed),
|
---|
| 87 | RandSeed = solverSeed
|
---|
| 88 | };
|
---|
| 89 | }
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | private static void RunSeqSolvFuncApproxForProblem(
|
---|
| 94 | int randSeed,
|
---|
| 95 | IProblem problem,
|
---|
| 96 | int maxIters,
|
---|
| 97 | int maxSize
|
---|
| 98 | ) {
|
---|
| 99 | var solver = new SequentialSearch(problem, maxSize, new Random(randSeed), 0,
|
---|
| 100 | new GenericFunctionApproximationGrammarPolicy(problem, true));
|
---|
| 101 | var problemName = problem.GetType().Name;
|
---|
| 102 | var bestKnownQuality = problem.BestKnownQuality(maxSize);
|
---|
| 103 | RunSolver(solver, problemName, bestKnownQuality, maxIters, maxSize);
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | private static void RunSolver(ISolver solver, string problemName, double bestKnownQuality, int maxIters, int maxSize) {
|
---|
| 107 | int iterations = 0;
|
---|
| 108 | var globalStatistics = new SentenceSetStatistics(bestKnownQuality);
|
---|
| 109 | var gpName = solver.GetType().Name;
|
---|
| 110 | solver.SolutionEvaluated += (sentence, quality) => {
|
---|
| 111 | iterations++;
|
---|
| 112 | globalStatistics.AddSentence(sentence, quality);
|
---|
| 113 |
|
---|
| 114 | if (iterations % 1000 == 0) {
|
---|
| 115 | Console.WriteLine("\"{0,25}\" {1} \"{2,25}\" {3}", gpName, maxSize, problemName, globalStatistics);
|
---|
| 116 | }
|
---|
| 117 | };
|
---|
| 118 |
|
---|
| 119 | solver.Run(maxIters);
|
---|
| 120 | }
|
---|
| 121 | #endregion
|
---|
| 122 | }
|
---|
| 123 | }
|
---|