Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GrammaticalOptimization/Test/RunGpExperiments.cs @ 13067

Last change on this file since 13067 was 11981, checked in by gkronber, 10 years ago

#2283: cleanup and included HeuristicLab.dlls to create a self-contained branch

File size: 13.6 KB
Line 
1using System;
2using System.Collections;
3using System.Collections.Generic;
4using HeuristicLab.Algorithms.GeneticProgramming;
5using HeuristicLab.Algorithms.GrammaticalOptimization;
6using HeuristicLab.Problems.GrammaticalOptimization.SymbReg;
7using Microsoft.VisualStudio.TestTools.UnitTesting;
8
9namespace HeuristicLab.Problems.GrammaticalOptimization.Test {
10
11
12  [TestClass]
13  public class RunGpExperiments {
14    private readonly static int[] popSizes = new int[] { 100, 250, 500, 1000, 2500, 5000, 10000 };
15    private readonly static double[] mutationRates = new double[] { 0.15 };
16    private readonly static int randSeed = 31415;
17
18    internal class GPConfiguration {
19      public ISymbolicExpressionTreeProblem Problem;
20      public int PopSize;
21      public int MaxSize;
22      public int RandSeed;
23      public double MutationRate;
24
25      public override string ToString() {
26        return string.Format("{0} {1} {2} {3} {4}", RandSeed, Problem, PopSize, MaxSize, MutationRate);
27      }
28    }
29
30    #region permutation
31    [TestMethod]
32    public void RunStandardGPPermutationProblem() {
33      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
34      {
35        (randSeed) => (ISymbolicExpressionTreeProblem)new PermutationProblem(),
36      };
37
38      var maxSizes = new int[] { 32 };
39      int nReps = 20;
40      int maxIterations = 50000;
41      foreach (var instanceFactory in instanceFactories) {
42        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
43          RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
44        }
45      }
46    }
47    [TestMethod]
48    public void RunOffspringSelectionGPPermutationProblem() {
49      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
50      {
51        (randSeed) => (ISymbolicExpressionTreeProblem)new PermutationProblem(),
52      };
53
54      var maxSizes = new int[] { 32 };
55      int nReps = 20;
56      int maxIterations = 50000;
57      foreach (var instanceFactory in instanceFactories) {
58        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
59          RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
60        }
61      }
62    }
63    #endregion
64
65    #region royalpair
66    [TestMethod]
67    public void RunStandardGPRoyalPairProblem() {
68      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
69      {
70        (randSeed) => (ISymbolicExpressionTreeProblem)new RoyalPairProblem(),
71      };
72
73      var maxSizes = new int[] { 32, 64, 128, 256 };
74      int nReps = 20;
75      int maxIterations = 50000;
76      foreach (var instanceFactory in instanceFactories) {
77        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
78          RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
79        }
80      }
81    }
82    [TestMethod]
83    public void RunOffspringSelectionGPRoyalPairProblem() {
84      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
85      {
86        (randSeed) => (ISymbolicExpressionTreeProblem)new RoyalPairProblem(),
87      };
88
89      var maxSizes = new int[] { 32, 64, 128, 256 };
90      int nReps = 20;
91      int maxIterations = 50000;
92      foreach (var instanceFactory in instanceFactories) {
93        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
94          RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
95        }
96      }
97    }
98    #endregion
99
100    #region royalsymbol
101    [TestMethod]
102    public void RunStandardGPRoyalSymbolProblem() {
103      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
104      {
105        (randSeed) => (ISymbolicExpressionTreeProblem)new RoyalSymbolProblem(),
106      };
107
108      var maxSizes = new int[] { 32, 64, 128, 256 };
109      int nReps = 20;
110      int maxIterations = 50000;
111      foreach (var instanceFactory in instanceFactories) {
112        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
113          RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
114        }
115      }
116    }
117    [TestMethod]
118    public void RunOffspringSelectionGPRoyalSymbolProblem() {
119      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
120      {
121        (randSeed) => (ISymbolicExpressionTreeProblem)new RoyalSymbolProblem(),
122      };
123
124      var maxSizes = new int[] { 32, 64, 128, 256 };
125      int nReps = 20;
126      int maxIterations = 50000;
127      foreach (var instanceFactory in instanceFactories) {
128        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
129          RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
130        }
131      }
132    }
133    #endregion
134
135    #region findphrases
136    [TestMethod]
137    public void RunStandardGPFindPhrasesProblem() {
138      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
139      {
140        (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 0, 1, 0, true),
141        (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 0, 1, 0, false),
142        (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 50, 1, 0.8, false),
143      };
144
145      var maxSizes = new int[] { 15 * 3 }; // * 3 for non-terminals
146      int nReps = 20;
147      int maxIterations = 50000;
148      foreach (var instanceFactory in instanceFactories) {
149        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
150          RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
151        }
152      }
153    }
154    [TestMethod]
155    public void RunOffspringSelectionGPFindPhrasesProblem() {
156      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
157      {
158        (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 0, 1, 0, true),
159        (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 0, 1, 0, false),
160        (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 50, 1, 0.8, false),
161      };
162
163      var maxSizes = new int[] { 15 * 3 }; // * 3 for non-terminals
164      int nReps = 20;
165      int maxIterations = 50000;
166      foreach (var instanceFactory in instanceFactories) {
167        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
168          RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
169        }
170      }
171    }
172    #endregion
173
174    #region artificial ant
175    [TestMethod]
176    public void RunStandardGPArtificialAntProblem() {
177      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
178      {
179        (randSeed) => (ISymbolicExpressionTreeProblem) new SantaFeAntProblem(),
180      };
181
182      var maxSizes = new int[] { 30, 50, 100 }; // size of sequential representation is 17
183      int nReps = 20;
184      int maxIterations = 100000; // randomsearch finds the optimum almost always for 100000 evals
185      foreach (var instanceFactory in instanceFactories) {
186        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
187          RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
188        }
189      }
190    }
191    [TestMethod]
192    public void RunOffspringSelectionGPArtificialAntProblem() {
193      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
194      {
195        (randSeed) => (ISymbolicExpressionTreeProblem) new SantaFeAntProblem(),
196      };
197
198      var maxSizes = new int[] { 30, 50, 100 }; // size of sequential representation is 17
199      int nReps = 20;
200      int maxIterations = 100000; // randomsearch finds the optimum almost always for 100000 evals
201      foreach (var instanceFactory in instanceFactories) {
202        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
203          RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
204        }
205      }
206    }
207    #endregion
208
209    #region symb-reg-poly-10
210    [TestMethod]
211    public void RunStandardGPPoly10Problem() {
212      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
213      {
214        (randSeed) => (ISymbolicExpressionTreeProblem) new SymbolicRegressionPoly10Problem(),
215      };
216
217      var maxSizes = new int[] { 30, 50, 100 }; // size of sequential representation is 23
218      int nReps = 20;
219      int maxIterations = 100000; // sequentialsearch should find the optimum within 100000 evals
220      foreach (var instanceFactory in instanceFactories) {
221        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
222          RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
223        }
224      }
225    }
226    [TestMethod]
227    public void RunOffspringSelectionGPPoly10Problem() {
228      var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
229      {
230        (randSeed) => (ISymbolicExpressionTreeProblem) new SymbolicRegressionPoly10Problem(),
231      };
232
233      var maxSizes = new int[] { 30, 50, 100 }; // size of sequential representation is 23
234      int nReps = 20;
235      int maxIterations = 100000; // sequentialsearch should find the optimum within 100000 evals
236      foreach (var instanceFactory in instanceFactories) {
237        foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
238          RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
239        }
240      }
241    }
242    #endregion
243
244    #region helpers
245    private IEnumerable<GPConfiguration> GenerateConfigurations(Func<int, ISymbolicExpressionTreeProblem> problemFactory,
246      int nReps,
247      IEnumerable<int> popSizes,
248      IEnumerable<int> maxSizes,
249      IEnumerable<double> mutationRates) {
250      var seedRand = new Random(randSeed);
251      // the problem seed is the same for all configuratons
252      // this guarantees that we solve the _same_ problem each time
253      // with different solvers and multiple repetitions
254      var problemSeed = randSeed;
255      for (int i = 0; i < nReps; i++) {
256        // in each repetition use the same random seed for all solver configuratons
257        // do nReps with different seeds for each configuration
258        var solverSeed = seedRand.Next();
259        foreach (var popSize in popSizes) {
260          foreach (var mutRate in mutationRates) {
261            foreach (var maxSize in maxSizes) {
262              yield return new GPConfiguration {
263                MaxSize = maxSize,
264                MutationRate = mutRate,
265                PopSize = popSize,
266                Problem = problemFactory(problemSeed),
267                RandSeed = solverSeed
268              };
269            }
270          }
271        }
272      }
273    }
274
275    private static void RunStandardGpForProblem(
276      int randSeed,
277      ISymbolicExpressionTreeProblem problem,
278      int maxIters,
279      int popSize,
280      int maxSize,
281      double mutationRate
282      ) {
283      var gp = new StandardGP(problem, new Random(randSeed), false);
284      var problemName = problem.GetType().Name;
285      var bestKnownQuality = problem.BestKnownQuality(maxSize);
286      RunGP(gp, problemName, bestKnownQuality, maxIters, popSize, mutationRate, maxSize);
287    }
288
289    private static void RunOffspringSelectionGpForProblem(
290  int randSeed,
291  ISymbolicExpressionTreeProblem problem,
292  int maxIters,
293  int popSize,
294  int maxSize,
295  double mutationRate
296  ) {
297      var gp = new OffspringSelectionGP(problem, new Random(randSeed), false);
298      var problemName = problem.GetType().Name;
299      var bestKnownQuality = problem.BestKnownQuality(maxSize);
300      RunGP(gp, problemName, bestKnownQuality, maxIters, popSize, mutationRate, maxSize);
301    }
302
303
304
305
306    private static void RunGP(IGPSolver gp, string problemName, double bestKnownQuality, int maxIters, int popSize, double mutationRate, int maxSize) {
307      int iterations = 0;
308      var globalStatistics = new SentenceSetStatistics(bestKnownQuality);
309      var gpName = gp.GetType().Name;
310      gp.SolutionEvaluated += (sentence, quality) => {
311        iterations++;
312        globalStatistics.AddSentence(sentence, quality);
313
314        if (iterations % 1000 == 0) {
315          Console.WriteLine("\"{0,25}\" {1} {2:N2} {3} \"{4,25}\" {5}", gpName, popSize, mutationRate, maxSize, problemName, globalStatistics);
316        }
317      };
318
319      gp.PopulationSize = popSize;
320      gp.MutationRate = mutationRate;
321      gp.MaxSolutionSize = maxSize + 2;
322      gp.MaxSolutionDepth = maxSize + 2;
323
324      gp.Run(maxIters);
325    }
326    #endregion
327  }
328}
Note: See TracBrowser for help on using the repository browser.