[11981] | 1 | using System;
|
---|
| 2 | using System.Collections;
|
---|
| 3 | using System.Collections.Generic;
|
---|
| 4 | using HeuristicLab.Algorithms.GeneticProgramming;
|
---|
| 5 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
| 6 | using HeuristicLab.Problems.GrammaticalOptimization.SymbReg;
|
---|
| 7 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 8 |
|
---|
| 9 | namespace HeuristicLab.Problems.GrammaticalOptimization.Test {
|
---|
| 10 |
|
---|
| 11 |
|
---|
| 12 | [TestClass]
|
---|
| 13 | public class RunGpExperiments {
|
---|
| 14 | private readonly static int[] popSizes = new int[] { 100, 250, 500, 1000, 2500, 5000, 10000 };
|
---|
| 15 | private readonly static double[] mutationRates = new double[] { 0.15 };
|
---|
| 16 | private readonly static int randSeed = 31415;
|
---|
| 17 |
|
---|
| 18 | internal class GPConfiguration {
|
---|
| 19 | public ISymbolicExpressionTreeProblem Problem;
|
---|
| 20 | public int PopSize;
|
---|
| 21 | public int MaxSize;
|
---|
| 22 | public int RandSeed;
|
---|
| 23 | public double MutationRate;
|
---|
| 24 |
|
---|
| 25 | public override string ToString() {
|
---|
| 26 | return string.Format("{0} {1} {2} {3} {4}", RandSeed, Problem, PopSize, MaxSize, MutationRate);
|
---|
| 27 | }
|
---|
| 28 | }
|
---|
| 29 |
|
---|
| 30 | #region permutation
|
---|
| 31 | [TestMethod]
|
---|
| 32 | public void RunStandardGPPermutationProblem() {
|
---|
| 33 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 34 | {
|
---|
| 35 | (randSeed) => (ISymbolicExpressionTreeProblem)new PermutationProblem(),
|
---|
| 36 | };
|
---|
| 37 |
|
---|
| 38 | var maxSizes = new int[] { 32 };
|
---|
| 39 | int nReps = 20;
|
---|
| 40 | int maxIterations = 50000;
|
---|
| 41 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 42 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 43 | RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 44 | }
|
---|
| 45 | }
|
---|
| 46 | }
|
---|
| 47 | [TestMethod]
|
---|
| 48 | public void RunOffspringSelectionGPPermutationProblem() {
|
---|
| 49 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 50 | {
|
---|
| 51 | (randSeed) => (ISymbolicExpressionTreeProblem)new PermutationProblem(),
|
---|
| 52 | };
|
---|
| 53 |
|
---|
| 54 | var maxSizes = new int[] { 32 };
|
---|
| 55 | int nReps = 20;
|
---|
| 56 | int maxIterations = 50000;
|
---|
| 57 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 58 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 59 | RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 60 | }
|
---|
| 61 | }
|
---|
| 62 | }
|
---|
| 63 | #endregion
|
---|
| 64 |
|
---|
| 65 | #region royalpair
|
---|
| 66 | [TestMethod]
|
---|
| 67 | public void RunStandardGPRoyalPairProblem() {
|
---|
| 68 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 69 | {
|
---|
| 70 | (randSeed) => (ISymbolicExpressionTreeProblem)new RoyalPairProblem(),
|
---|
| 71 | };
|
---|
| 72 |
|
---|
| 73 | var maxSizes = new int[] { 32, 64, 128, 256 };
|
---|
| 74 | int nReps = 20;
|
---|
| 75 | int maxIterations = 50000;
|
---|
| 76 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 77 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 78 | RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 79 | }
|
---|
| 80 | }
|
---|
| 81 | }
|
---|
| 82 | [TestMethod]
|
---|
| 83 | public void RunOffspringSelectionGPRoyalPairProblem() {
|
---|
| 84 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 85 | {
|
---|
| 86 | (randSeed) => (ISymbolicExpressionTreeProblem)new RoyalPairProblem(),
|
---|
| 87 | };
|
---|
| 88 |
|
---|
| 89 | var maxSizes = new int[] { 32, 64, 128, 256 };
|
---|
| 90 | int nReps = 20;
|
---|
| 91 | int maxIterations = 50000;
|
---|
| 92 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 93 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 94 | RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 95 | }
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | #endregion
|
---|
| 99 |
|
---|
| 100 | #region royalsymbol
|
---|
| 101 | [TestMethod]
|
---|
| 102 | public void RunStandardGPRoyalSymbolProblem() {
|
---|
| 103 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 104 | {
|
---|
| 105 | (randSeed) => (ISymbolicExpressionTreeProblem)new RoyalSymbolProblem(),
|
---|
| 106 | };
|
---|
| 107 |
|
---|
| 108 | var maxSizes = new int[] { 32, 64, 128, 256 };
|
---|
| 109 | int nReps = 20;
|
---|
| 110 | int maxIterations = 50000;
|
---|
| 111 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 112 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 113 | RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 114 | }
|
---|
| 115 | }
|
---|
| 116 | }
|
---|
| 117 | [TestMethod]
|
---|
| 118 | public void RunOffspringSelectionGPRoyalSymbolProblem() {
|
---|
| 119 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 120 | {
|
---|
| 121 | (randSeed) => (ISymbolicExpressionTreeProblem)new RoyalSymbolProblem(),
|
---|
| 122 | };
|
---|
| 123 |
|
---|
| 124 | var maxSizes = new int[] { 32, 64, 128, 256 };
|
---|
| 125 | int nReps = 20;
|
---|
| 126 | int maxIterations = 50000;
|
---|
| 127 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 128 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 129 | RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 130 | }
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 | #endregion
|
---|
| 134 |
|
---|
| 135 | #region findphrases
|
---|
| 136 | [TestMethod]
|
---|
| 137 | public void RunStandardGPFindPhrasesProblem() {
|
---|
| 138 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 139 | {
|
---|
| 140 | (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 0, 1, 0, true),
|
---|
| 141 | (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 0, 1, 0, false),
|
---|
| 142 | (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 50, 1, 0.8, false),
|
---|
| 143 | };
|
---|
| 144 |
|
---|
| 145 | var maxSizes = new int[] { 15 * 3 }; // * 3 for non-terminals
|
---|
| 146 | int nReps = 20;
|
---|
| 147 | int maxIterations = 50000;
|
---|
| 148 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 149 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 150 | RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 151 | }
|
---|
| 152 | }
|
---|
| 153 | }
|
---|
| 154 | [TestMethod]
|
---|
| 155 | public void RunOffspringSelectionGPFindPhrasesProblem() {
|
---|
| 156 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 157 | {
|
---|
| 158 | (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 0, 1, 0, true),
|
---|
| 159 | (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 0, 1, 0, false),
|
---|
| 160 | (randSeed) => (ISymbolicExpressionTreeProblem) new FindPhrasesProblem(new Random(randSeed), 20, 5, 3, 5, 50, 1, 0.8, false),
|
---|
| 161 | };
|
---|
| 162 |
|
---|
| 163 | var maxSizes = new int[] { 15 * 3 }; // * 3 for non-terminals
|
---|
| 164 | int nReps = 20;
|
---|
| 165 | int maxIterations = 50000;
|
---|
| 166 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 167 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 168 | RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 | #endregion
|
---|
| 173 |
|
---|
| 174 | #region artificial ant
|
---|
| 175 | [TestMethod]
|
---|
| 176 | public void RunStandardGPArtificialAntProblem() {
|
---|
| 177 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 178 | {
|
---|
| 179 | (randSeed) => (ISymbolicExpressionTreeProblem) new SantaFeAntProblem(),
|
---|
| 180 | };
|
---|
| 181 |
|
---|
| 182 | var maxSizes = new int[] { 30, 50, 100 }; // size of sequential representation is 17
|
---|
| 183 | int nReps = 20;
|
---|
| 184 | int maxIterations = 100000; // randomsearch finds the optimum almost always for 100000 evals
|
---|
| 185 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 186 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 187 | RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 188 | }
|
---|
| 189 | }
|
---|
| 190 | }
|
---|
| 191 | [TestMethod]
|
---|
| 192 | public void RunOffspringSelectionGPArtificialAntProblem() {
|
---|
| 193 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 194 | {
|
---|
| 195 | (randSeed) => (ISymbolicExpressionTreeProblem) new SantaFeAntProblem(),
|
---|
| 196 | };
|
---|
| 197 |
|
---|
| 198 | var maxSizes = new int[] { 30, 50, 100 }; // size of sequential representation is 17
|
---|
| 199 | int nReps = 20;
|
---|
| 200 | int maxIterations = 100000; // randomsearch finds the optimum almost always for 100000 evals
|
---|
| 201 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 202 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 203 | RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 204 | }
|
---|
| 205 | }
|
---|
| 206 | }
|
---|
| 207 | #endregion
|
---|
| 208 |
|
---|
| 209 | #region symb-reg-poly-10
|
---|
| 210 | [TestMethod]
|
---|
| 211 | public void RunStandardGPPoly10Problem() {
|
---|
| 212 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 213 | {
|
---|
| 214 | (randSeed) => (ISymbolicExpressionTreeProblem) new SymbolicRegressionPoly10Problem(),
|
---|
| 215 | };
|
---|
| 216 |
|
---|
| 217 | var maxSizes = new int[] { 30, 50, 100 }; // size of sequential representation is 23
|
---|
| 218 | int nReps = 20;
|
---|
| 219 | int maxIterations = 100000; // sequentialsearch should find the optimum within 100000 evals
|
---|
| 220 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 221 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 222 | RunStandardGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 223 | }
|
---|
| 224 | }
|
---|
| 225 | }
|
---|
| 226 | [TestMethod]
|
---|
| 227 | public void RunOffspringSelectionGPPoly10Problem() {
|
---|
| 228 | var instanceFactories = new Func<int, ISymbolicExpressionTreeProblem>[]
|
---|
| 229 | {
|
---|
| 230 | (randSeed) => (ISymbolicExpressionTreeProblem) new SymbolicRegressionPoly10Problem(),
|
---|
| 231 | };
|
---|
| 232 |
|
---|
| 233 | var maxSizes = new int[] { 30, 50, 100 }; // size of sequential representation is 23
|
---|
| 234 | int nReps = 20;
|
---|
| 235 | int maxIterations = 100000; // sequentialsearch should find the optimum within 100000 evals
|
---|
| 236 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 237 | foreach (var conf in GenerateConfigurations(instanceFactory, nReps, popSizes, maxSizes, mutationRates)) {
|
---|
| 238 | RunOffspringSelectionGpForProblem(conf.RandSeed, conf.Problem, maxIterations, conf.PopSize, conf.MaxSize, conf.MutationRate);
|
---|
| 239 | }
|
---|
| 240 | }
|
---|
| 241 | }
|
---|
| 242 | #endregion
|
---|
| 243 |
|
---|
| 244 | #region helpers
|
---|
| 245 | private IEnumerable<GPConfiguration> GenerateConfigurations(Func<int, ISymbolicExpressionTreeProblem> problemFactory,
|
---|
| 246 | int nReps,
|
---|
| 247 | IEnumerable<int> popSizes,
|
---|
| 248 | IEnumerable<int> maxSizes,
|
---|
| 249 | IEnumerable<double> mutationRates) {
|
---|
| 250 | var seedRand = new Random(randSeed);
|
---|
| 251 | // the problem seed is the same for all configuratons
|
---|
| 252 | // this guarantees that we solve the _same_ problem each time
|
---|
| 253 | // with different solvers and multiple repetitions
|
---|
| 254 | var problemSeed = randSeed;
|
---|
| 255 | for (int i = 0; i < nReps; i++) {
|
---|
| 256 | // in each repetition use the same random seed for all solver configuratons
|
---|
| 257 | // do nReps with different seeds for each configuration
|
---|
| 258 | var solverSeed = seedRand.Next();
|
---|
| 259 | foreach (var popSize in popSizes) {
|
---|
| 260 | foreach (var mutRate in mutationRates) {
|
---|
| 261 | foreach (var maxSize in maxSizes) {
|
---|
| 262 | yield return new GPConfiguration {
|
---|
| 263 | MaxSize = maxSize,
|
---|
| 264 | MutationRate = mutRate,
|
---|
| 265 | PopSize = popSize,
|
---|
| 266 | Problem = problemFactory(problemSeed),
|
---|
| 267 | RandSeed = solverSeed
|
---|
| 268 | };
|
---|
| 269 | }
|
---|
| 270 | }
|
---|
| 271 | }
|
---|
| 272 | }
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | private static void RunStandardGpForProblem(
|
---|
| 276 | int randSeed,
|
---|
| 277 | ISymbolicExpressionTreeProblem problem,
|
---|
| 278 | int maxIters,
|
---|
| 279 | int popSize,
|
---|
| 280 | int maxSize,
|
---|
| 281 | double mutationRate
|
---|
| 282 | ) {
|
---|
| 283 | var gp = new StandardGP(problem, new Random(randSeed), false);
|
---|
| 284 | var problemName = problem.GetType().Name;
|
---|
| 285 | var bestKnownQuality = problem.BestKnownQuality(maxSize);
|
---|
| 286 | RunGP(gp, problemName, bestKnownQuality, maxIters, popSize, mutationRate, maxSize);
|
---|
| 287 | }
|
---|
| 288 |
|
---|
| 289 | private static void RunOffspringSelectionGpForProblem(
|
---|
| 290 | int randSeed,
|
---|
| 291 | ISymbolicExpressionTreeProblem problem,
|
---|
| 292 | int maxIters,
|
---|
| 293 | int popSize,
|
---|
| 294 | int maxSize,
|
---|
| 295 | double mutationRate
|
---|
| 296 | ) {
|
---|
| 297 | var gp = new OffspringSelectionGP(problem, new Random(randSeed), false);
|
---|
| 298 | var problemName = problem.GetType().Name;
|
---|
| 299 | var bestKnownQuality = problem.BestKnownQuality(maxSize);
|
---|
| 300 | RunGP(gp, problemName, bestKnownQuality, maxIters, popSize, mutationRate, maxSize);
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 |
|
---|
| 304 |
|
---|
| 305 |
|
---|
| 306 | private static void RunGP(IGPSolver gp, string problemName, double bestKnownQuality, int maxIters, int popSize, double mutationRate, int maxSize) {
|
---|
| 307 | int iterations = 0;
|
---|
| 308 | var globalStatistics = new SentenceSetStatistics(bestKnownQuality);
|
---|
| 309 | var gpName = gp.GetType().Name;
|
---|
| 310 | gp.SolutionEvaluated += (sentence, quality) => {
|
---|
| 311 | iterations++;
|
---|
| 312 | globalStatistics.AddSentence(sentence, quality);
|
---|
| 313 |
|
---|
| 314 | if (iterations % 1000 == 0) {
|
---|
| 315 | Console.WriteLine("\"{0,25}\" {1} {2:N2} {3} \"{4,25}\" {5}", gpName, popSize, mutationRate, maxSize, problemName, globalStatistics);
|
---|
| 316 | }
|
---|
| 317 | };
|
---|
| 318 |
|
---|
| 319 | gp.PopulationSize = popSize;
|
---|
| 320 | gp.MutationRate = mutationRate;
|
---|
| 321 | gp.MaxSolutionSize = maxSize + 2;
|
---|
| 322 | gp.MaxSolutionDepth = maxSize + 2;
|
---|
| 323 |
|
---|
| 324 | gp.Run(maxIters);
|
---|
| 325 | }
|
---|
| 326 | #endregion
|
---|
| 327 | }
|
---|
| 328 | }
|
---|