[11981] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using System.Text;
|
---|
| 5 | using System.Threading.Tasks;
|
---|
| 6 | using HeuristicLab.Algorithms.Bandits;
|
---|
| 7 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
| 8 | using HeuristicLab.Algorithms.Bandits.GrammarPolicies;
|
---|
[12014] | 9 | using HeuristicLab.Algorithms.Bandits.Models;
|
---|
[11981] | 10 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
[12014] | 11 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 12 | using RandomPolicy = HeuristicLab.Algorithms.Bandits.BanditPolicies.RandomPolicy;
|
---|
[11981] | 13 |
|
---|
| 14 | namespace HeuristicLab.Problems.GrammaticalOptimization.Test {
|
---|
[12014] | 15 | [TestClass]
|
---|
| 16 | public class RunDemo {
|
---|
| 17 | [TestMethod]
|
---|
| 18 | public void RunGridTest() {
|
---|
| 19 | int maxIterations = 20000; // for poly-10 with 50000 evaluations no successful try with hl yet
|
---|
[11981] | 20 | //var globalRandom = new Random(31415);
|
---|
| 21 | var localRandSeed = new Random().Next();
|
---|
| 22 | var reps = 20;
|
---|
| 23 |
|
---|
| 24 | var policyFactories = new Func<IBanditPolicy>[]
|
---|
| 25 | {
|
---|
[12014] | 26 | () => new RandomPolicy(),
|
---|
| 27 | () => new ActiveLearningPolicy(),
|
---|
| 28 | () => new EpsGreedyPolicy(0.01, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
| 29 | () => new EpsGreedyPolicy(0.05, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
| 30 | () => new EpsGreedyPolicy(0.1, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
| 31 | () => new EpsGreedyPolicy(0.2, (aInfo)=> aInfo.MaxReward, "max"),
|
---|
| 32 | //() => new GaussianThompsonSamplingPolicy(),
|
---|
| 33 | () => new GaussianThompsonSamplingPolicy(true),
|
---|
| 34 | () => new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 10, 1)),
|
---|
| 35 | () => new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 10, 1, 1)),
|
---|
| 36 | //() => new BernoulliThompsonSamplingPolicy(),
|
---|
| 37 | () => new GenericThompsonSamplingPolicy(new BernoulliModel(1, 1)),
|
---|
| 38 | () => new EpsGreedyPolicy(0.01),
|
---|
| 39 | () => new EpsGreedyPolicy(0.05),
|
---|
| 40 | () => new EpsGreedyPolicy(0.1),
|
---|
| 41 | () => new EpsGreedyPolicy(0.2),
|
---|
| 42 | () => new EpsGreedyPolicy(0.5),
|
---|
| 43 | () => new UCTPolicy(0.01),
|
---|
| 44 | () => new UCTPolicy(0.05),
|
---|
| 45 | () => new UCTPolicy(0.1),
|
---|
| 46 | () => new UCTPolicy(0.5),
|
---|
| 47 | () => new UCTPolicy(1),
|
---|
| 48 | () => new UCTPolicy(2),
|
---|
| 49 | () => new UCTPolicy( 5),
|
---|
| 50 | () => new UCTPolicy( 10),
|
---|
| 51 | () => new ModifiedUCTPolicy(0.01),
|
---|
| 52 | () => new ModifiedUCTPolicy(0.05),
|
---|
| 53 | () => new ModifiedUCTPolicy(0.1),
|
---|
| 54 | () => new ModifiedUCTPolicy(0.5),
|
---|
| 55 | () => new ModifiedUCTPolicy(1),
|
---|
| 56 | () => new ModifiedUCTPolicy(2),
|
---|
| 57 | () => new ModifiedUCTPolicy( 5),
|
---|
| 58 | () => new ModifiedUCTPolicy( 10),
|
---|
| 59 | () => new UCB1Policy(),
|
---|
| 60 | () => new UCB1TunedPolicy(),
|
---|
| 61 | () => new UCBNormalPolicy(),
|
---|
| 62 | () => new BoltzmannExplorationPolicy(1),
|
---|
| 63 | () => new BoltzmannExplorationPolicy(10),
|
---|
| 64 | () => new BoltzmannExplorationPolicy(20),
|
---|
| 65 | () => new BoltzmannExplorationPolicy(100),
|
---|
| 66 | () => new BoltzmannExplorationPolicy(200),
|
---|
| 67 | () => new BoltzmannExplorationPolicy(500),
|
---|
| 68 | () => new ChernoffIntervalEstimationPolicy( 0.01),
|
---|
| 69 | () => new ChernoffIntervalEstimationPolicy( 0.05),
|
---|
| 70 | () => new ChernoffIntervalEstimationPolicy( 0.1),
|
---|
| 71 | () => new ChernoffIntervalEstimationPolicy( 0.2),
|
---|
| 72 | () => new ThresholdAscentPolicy(5, 0.01),
|
---|
| 73 | () => new ThresholdAscentPolicy(5, 0.05),
|
---|
| 74 | () => new ThresholdAscentPolicy(5, 0.1),
|
---|
| 75 | () => new ThresholdAscentPolicy(5, 0.2),
|
---|
| 76 | () => new ThresholdAscentPolicy(10, 0.01),
|
---|
| 77 | () => new ThresholdAscentPolicy(10, 0.05),
|
---|
| 78 | () => new ThresholdAscentPolicy(10, 0.1),
|
---|
| 79 | () => new ThresholdAscentPolicy(10, 0.2),
|
---|
| 80 | () => new ThresholdAscentPolicy(50, 0.01),
|
---|
| 81 | () => new ThresholdAscentPolicy(50, 0.05),
|
---|
| 82 | () => new ThresholdAscentPolicy(50, 0.1),
|
---|
| 83 | () => new ThresholdAscentPolicy(50, 0.2),
|
---|
| 84 | () => new ThresholdAscentPolicy(100, 0.01),
|
---|
[11981] | 85 | () => new ThresholdAscentPolicy(100, 0.05),
|
---|
[12014] | 86 | () => new ThresholdAscentPolicy(100, 0.1),
|
---|
| 87 | () => new ThresholdAscentPolicy(100, 0.2),
|
---|
| 88 | () => new ThresholdAscentPolicy(500, 0.01),
|
---|
| 89 | () => new ThresholdAscentPolicy(500, 0.05),
|
---|
| 90 | () => new ThresholdAscentPolicy(500, 0.1),
|
---|
| 91 | () => new ThresholdAscentPolicy(500, 0.2),
|
---|
| 92 | () => new ThresholdAscentPolicy(5000, 0.01),
|
---|
| 93 | () => new ThresholdAscentPolicy(10000, 0.01),
|
---|
[11981] | 94 | };
|
---|
| 95 |
|
---|
| 96 | var instanceFactories = new Func<Random, Tuple<IProblem, int>>[]
|
---|
| 97 | {
|
---|
| 98 | //(rand) => Tuple.Create((IProblem)new SantaFeAntProblem(), 17),
|
---|
| 99 | //(rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:0, correctReward:1, decoyReward:0, phrasesAsSets:false ), 15),
|
---|
| 100 | //(rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:0, correctReward:1, decoyReward:0, phrasesAsSets:true ), 15),
|
---|
| 101 | //(rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:200, correctReward:1, decoyReward:0.5, phrasesAsSets:false), 15),
|
---|
| 102 | //(rand) => Tuple.Create((IProblem)new FindPhrasesProblem(rand, 10, numPhrases:5, phraseLen:3, numOptimalPhrases:5, numDecoyPhrases:200, correctReward:1, decoyReward:0.5, phrasesAsSets:true), 15),
|
---|
[12014] | 103 | //(rand) => Tuple.Create((IProblem)new SymbolicRegressionPoly10Problem(), 23)
|
---|
| 104 | (rand) => Tuple.Create((IProblem)new SantaFeAntProblem(), 17)
|
---|
[11981] | 105 | };
|
---|
| 106 |
|
---|
| 107 | foreach (var instanceFactory in instanceFactories) {
|
---|
| 108 | foreach (var useCanonical in new bool[] { true /*, false */ }) {
|
---|
[12014] | 109 | foreach (var randomTries in new int[] { 0 /*, 1, 10 /*, /* 5, 100 /*, 500, 1000 */}) {
|
---|
[11981] | 110 | foreach (var policyFactory in policyFactories) {
|
---|
| 111 | var myRandomTries = randomTries;
|
---|
| 112 | var localRand = new Random(localRandSeed);
|
---|
| 113 | var options = new ParallelOptions();
|
---|
| 114 | options.MaxDegreeOfParallelism = 1;
|
---|
| 115 | Parallel.For(0, reps, options, (i) => {
|
---|
| 116 | Random myLocalRand;
|
---|
| 117 | lock (localRand)
|
---|
| 118 | myLocalRand = new Random(localRand.Next());
|
---|
| 119 |
|
---|
| 120 | int iterations = 0;
|
---|
| 121 | var globalStatistics = new SentenceSetStatistics();
|
---|
| 122 |
|
---|
| 123 | // var problem = new SymbolicRegressionPoly10Problem();
|
---|
| 124 | // var problem = new SantaFeAntProblem();
|
---|
| 125 | //var problem = new PalindromeProblem();
|
---|
| 126 | //var problem = new HardPalindromeProblem();
|
---|
| 127 | //var problem = new RoyalPairProblem();
|
---|
| 128 | //var problem = new EvenParityProblem();
|
---|
| 129 | // var alg = new MctsSampler(problem.Item1, problem.Item2, myLocalRand, myRandomTries, policy());
|
---|
| 130 | var instance = instanceFactory(myLocalRand);
|
---|
| 131 | var problem = instance.Item1;
|
---|
| 132 | var maxLen = instance.Item2;
|
---|
| 133 | var alg = new SequentialSearch(problem, maxLen, myLocalRand, myRandomTries,
|
---|
| 134 | new GenericGrammarPolicy(problem, policyFactory(), useCanonical));
|
---|
| 135 | // var alg = new SequentialSearch(problem, maxLen, myLocalRand,
|
---|
| 136 | // myRandomTries,
|
---|
| 137 | // new GenericFunctionApproximationGrammarPolicy(problem,
|
---|
| 138 | // useCanonical));
|
---|
| 139 | //var alg = new ExhaustiveBreadthFirstSearch(problem, 25);
|
---|
| 140 | //var alg = new AlternativesContextSampler(problem, 25);
|
---|
| 141 |
|
---|
| 142 | alg.SolutionEvaluated += (sentence, quality) => {
|
---|
| 143 | iterations++;
|
---|
| 144 | globalStatistics.AddSentence(sentence, quality);
|
---|
| 145 | if (iterations % 1000 == 0) {
|
---|
| 146 | Console.WriteLine("{0,3} {1,5} \"{2,25}\" {3} {4} {5}", i, myRandomTries, policyFactory(), useCanonical, problem.ToString(), globalStatistics);
|
---|
| 147 | }
|
---|
| 148 | };
|
---|
| 149 | alg.FoundNewBestSolution += (sentence, quality) => {
|
---|
| 150 | //Console.WriteLine("{0,5} {1,25} {2} {3}",
|
---|
| 151 | // myRandomTries, policyFactory(), useCanonical,
|
---|
| 152 | // globalStatistics);
|
---|
| 153 | };
|
---|
| 154 |
|
---|
| 155 | alg.Run(maxIterations);
|
---|
| 156 | });
|
---|
| 157 | }
|
---|
| 158 | }
|
---|
| 159 | }
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 | }
|
---|