1 | using System;
|
---|
2 |
|
---|
3 | namespace SharpVectors.Polynomials
|
---|
4 | {
|
---|
5 | /// <summary>
|
---|
6 | /// Summary description for Polynomial.
|
---|
7 | /// </summary>
|
---|
8 | /// <developer>kevin@kevlindev.com</developer>
|
---|
9 | /// <completed>100</completed>
|
---|
10 | public class Polynomial
|
---|
11 | {
|
---|
12 | #region fields
|
---|
13 | private double[] coefficients;
|
---|
14 | private double s;
|
---|
15 | #endregion
|
---|
16 |
|
---|
17 | #region properties
|
---|
18 | public int Degree
|
---|
19 | {
|
---|
20 | get { return this.coefficients.Length - 1; }
|
---|
21 | }
|
---|
22 |
|
---|
23 | public double this[int index]
|
---|
24 | {
|
---|
25 | get { return this.coefficients[index]; }
|
---|
26 | }
|
---|
27 | #endregion
|
---|
28 |
|
---|
29 | #region constructors
|
---|
30 | /// <summary>
|
---|
31 | /// Polynomial constuctor
|
---|
32 | /// </summary>
|
---|
33 | /// <param name="coefficients"></param>
|
---|
34 | public Polynomial(params double[] coefficients)
|
---|
35 | {
|
---|
36 | int end = 0;
|
---|
37 | double TOLERANCE = 1e-9;
|
---|
38 |
|
---|
39 | for ( end = coefficients.Length; end > 0; end-- )
|
---|
40 | {
|
---|
41 | if ( Math.Abs(coefficients[end-1]) > TOLERANCE )
|
---|
42 | break;
|
---|
43 | }
|
---|
44 |
|
---|
45 | if ( end > 0 )
|
---|
46 | {
|
---|
47 | this.coefficients = new double[coefficients.Length - (coefficients.Length - end)];
|
---|
48 | for ( int i = 0; i < end; i++ )
|
---|
49 | {
|
---|
50 | this.coefficients[i] = coefficients[i];
|
---|
51 | }
|
---|
52 | }
|
---|
53 | else
|
---|
54 | {
|
---|
55 | this.coefficients = new double[0];
|
---|
56 | }
|
---|
57 | }
|
---|
58 |
|
---|
59 | public Polynomial(Polynomial that)
|
---|
60 | {
|
---|
61 | this.coefficients = that.coefficients;
|
---|
62 | }
|
---|
63 | #endregion
|
---|
64 |
|
---|
65 | #region class methods
|
---|
66 | /// <summary>
|
---|
67 | /// Interpolate - adapted from "Numerical Recipes in C"
|
---|
68 | /// </summary>
|
---|
69 | /// <param name="xs"></param>
|
---|
70 | /// <param name="ys"></param>
|
---|
71 | /// <param name="n"></param>
|
---|
72 | /// <param name="offset"></param>
|
---|
73 | /// <param name="x"></param>
|
---|
74 | /// <returns></returns>
|
---|
75 | static public ValueWithError Interpolate(double[] xs, double[] ys, int n, int offset, double x)
|
---|
76 | {
|
---|
77 | double y;
|
---|
78 | double dy = 0.0;
|
---|
79 | double[] c = new double[n];
|
---|
80 | double[] d = new double[n];
|
---|
81 | int ns = 0;
|
---|
82 |
|
---|
83 | double diff = Math.Abs(x - xs[offset]);
|
---|
84 | for ( int i = 0; i < n; i++ )
|
---|
85 | {
|
---|
86 | double dift = Math.Abs(x - xs[offset+i]);
|
---|
87 |
|
---|
88 | if ( dift < diff )
|
---|
89 | {
|
---|
90 | ns = i;
|
---|
91 | diff = dift;
|
---|
92 | }
|
---|
93 | c[i] = d[i] = ys[offset+i];
|
---|
94 | }
|
---|
95 | y = ys[offset+ns];
|
---|
96 | ns--;
|
---|
97 |
|
---|
98 | for ( int m = 1; m < n; m++ )
|
---|
99 | {
|
---|
100 | for ( int i = 0; i < n-m; i++ )
|
---|
101 | {
|
---|
102 | double ho = xs[offset+i] - x;
|
---|
103 | double hp = xs[offset+i+m] - x;
|
---|
104 | double w = c[i+1]-d[i];
|
---|
105 | double den = ho - hp;
|
---|
106 |
|
---|
107 | if ( den == 0.0 ) return new ValueWithError(0,0);
|
---|
108 |
|
---|
109 | den = w / den;
|
---|
110 | d[i] = hp*den;
|
---|
111 | c[i] = ho*den;
|
---|
112 | }
|
---|
113 | dy = (2*(ns+1) < (n-m)) ? c[ns+1] : d[ns--];
|
---|
114 | y += dy;
|
---|
115 | }
|
---|
116 |
|
---|
117 | return new ValueWithError(y, dy);
|
---|
118 | }
|
---|
119 | #endregion
|
---|
120 |
|
---|
121 | #region protected methods
|
---|
122 | /// <summary>
|
---|
123 | /// trapezoid - adapted from "Numerical Recipes in C"
|
---|
124 | /// </summary>
|
---|
125 | /// <param name="min"></param>
|
---|
126 | /// <param name="max"></param>
|
---|
127 | /// <param name="n"></param>
|
---|
128 | /// <returns></returns>
|
---|
129 | protected double trapezoid(double min, double max, int n)
|
---|
130 | {
|
---|
131 | double range = max - min;
|
---|
132 |
|
---|
133 | if ( n == 1 )
|
---|
134 | {
|
---|
135 | this.s = 0.5*range*(this.Evaluate(min)+this.Evaluate(max));
|
---|
136 | }
|
---|
137 | else
|
---|
138 | {
|
---|
139 | int it = 1 << (n-2);
|
---|
140 | double delta = range / it;
|
---|
141 | double x = min + 0.5*delta;
|
---|
142 | double sum = 0.0;
|
---|
143 |
|
---|
144 | for ( int i = 0; i < it; i++ )
|
---|
145 | {
|
---|
146 | sum += this.Evaluate(x);
|
---|
147 | x += delta;
|
---|
148 | }
|
---|
149 | this.s = 0.5*(this.s + range*sum/it);
|
---|
150 | }
|
---|
151 |
|
---|
152 | return this.s;
|
---|
153 | }
|
---|
154 | #endregion
|
---|
155 |
|
---|
156 | #region public methods
|
---|
157 | /// <summary>
|
---|
158 | /// Evaluate
|
---|
159 | /// </summary>
|
---|
160 | /// <param name="t"></param>
|
---|
161 | /// <returns></returns>
|
---|
162 | public virtual double Evaluate(double t)
|
---|
163 | {
|
---|
164 | double result = 0.0;
|
---|
165 |
|
---|
166 | for ( int i = this.coefficients.Length - 1; i >= 0; i-- )
|
---|
167 | {
|
---|
168 | result = result * t + this.coefficients[i];
|
---|
169 | }
|
---|
170 |
|
---|
171 | return result;
|
---|
172 | }
|
---|
173 |
|
---|
174 | /// <summary>
|
---|
175 | /// Simspon - adapted from "Numerical Recipes in C"
|
---|
176 | /// </summary>
|
---|
177 | /// <param name="min"></param>
|
---|
178 | /// <param name="max"></param>
|
---|
179 | /// <returns></returns>
|
---|
180 | public double Simpson(double min, double max)
|
---|
181 | {
|
---|
182 | double s = 0.0;
|
---|
183 | double st = 0.0;
|
---|
184 | double os = 0.0;
|
---|
185 | double ost = 0.0;
|
---|
186 | int MAX = 20;
|
---|
187 | double TOLERANCE = 1e-7;
|
---|
188 |
|
---|
189 | for ( int j = 1; j <= MAX; j++ )
|
---|
190 | {
|
---|
191 | st = this.trapezoid(min, max, j);
|
---|
192 | s = (4.0 * st - ost) / 3.0;
|
---|
193 | if ( Math.Abs(s - os) < TOLERANCE*Math.Abs(os)) break;
|
---|
194 | os = s;
|
---|
195 | ost = st;
|
---|
196 | }
|
---|
197 |
|
---|
198 | return s;
|
---|
199 | }
|
---|
200 |
|
---|
201 | /// <summary>
|
---|
202 | /// Romberg - adapted from "Numerical Recipes in C"
|
---|
203 | /// </summary>
|
---|
204 | /// <param name="min"></param>
|
---|
205 | /// <param name="max"></param>
|
---|
206 | /// <returns></returns>
|
---|
207 | public double Romberg(double min, double max)
|
---|
208 | {
|
---|
209 | int MAX = 20;
|
---|
210 | double TOLERANCE = 1e-7;
|
---|
211 | int K = 4;
|
---|
212 | double[] s = new double[MAX+1];
|
---|
213 | double[] h = new double[MAX+1];
|
---|
214 | ValueWithError result = new ValueWithError(0,0);
|
---|
215 |
|
---|
216 | h[0] = 1.0;
|
---|
217 | for ( int j = 1; j <= MAX; j++ )
|
---|
218 | {
|
---|
219 | s[j-1] = trapezoid(min, max, j);
|
---|
220 | if ( j >= K )
|
---|
221 | {
|
---|
222 | result = Polynomial.Interpolate(h, s, K, j-K, 0.0);
|
---|
223 | if ( Math.Abs(result.Error) < TOLERANCE*result.Value ) break;
|
---|
224 | }
|
---|
225 | s[j] = s[j-1];
|
---|
226 | h[j] = 0.25 * h[j-1];
|
---|
227 | }
|
---|
228 |
|
---|
229 | return result.Value;
|
---|
230 | }
|
---|
231 | #endregion
|
---|
232 | }
|
---|
233 |
|
---|
234 | /// <summary>
|
---|
235 | /// Stucture used to return values with associated error tolerances
|
---|
236 | /// </summary>
|
---|
237 | public struct ValueWithError
|
---|
238 | {
|
---|
239 | public double Value;
|
---|
240 | public double Error;
|
---|
241 |
|
---|
242 | public ValueWithError(double value, double error)
|
---|
243 | {
|
---|
244 | this.Value = value;
|
---|
245 | this.Error = error;
|
---|
246 | }
|
---|
247 | }
|
---|
248 | } |
---|