1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Data;
|
---|
4 | using System.Diagnostics;
|
---|
5 | using System.Globalization;
|
---|
6 | using System.Linq;
|
---|
7 | using System.Text;
|
---|
8 | using System.Threading.Tasks;
|
---|
9 | using HeuristicLab.Algorithms.Bandits;
|
---|
10 | using HeuristicLab.Algorithms.Bandits.Models;
|
---|
11 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
12 | using HeuristicLab.Problems.GrammaticalOptimization;
|
---|
13 | using HeuristicLab.Problems.GrammaticalOptimization.SymbReg;
|
---|
14 |
|
---|
15 | namespace Main {
|
---|
16 | class Program {
|
---|
17 | static void Main(string[] args) {
|
---|
18 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
19 |
|
---|
20 | RunDemo();
|
---|
21 | //RunGridTest();
|
---|
22 | }
|
---|
23 |
|
---|
24 | private static void RunGridTest() {
|
---|
25 | int maxIterations = 200000; // for poly-10 with 50000 evaluations no successful try with hl yet
|
---|
26 | //var globalRandom = new Random(31415);
|
---|
27 | var localRandSeed = 31415;
|
---|
28 | var reps = 20;
|
---|
29 |
|
---|
30 | var policies = new Func<IPolicy>[]
|
---|
31 | {
|
---|
32 | () => new GaussianThompsonSamplingPolicy(),
|
---|
33 | () => new GaussianThompsonSamplingPolicy(true),
|
---|
34 | () => new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 1)),
|
---|
35 | () => new BernoulliThompsonSamplingPolicy(),
|
---|
36 | () => new GenericThompsonSamplingPolicy(new BernoulliModel(1, 1)),
|
---|
37 | () => new RandomPolicy(),
|
---|
38 | () => new EpsGreedyPolicy(0.01),
|
---|
39 | () => new EpsGreedyPolicy(0.05),
|
---|
40 | () => new EpsGreedyPolicy(0.1),
|
---|
41 | () => new EpsGreedyPolicy(0.2),
|
---|
42 | () => new EpsGreedyPolicy(0.5),
|
---|
43 | () => new UCTPolicy(0.1),
|
---|
44 | () => new UCTPolicy(0.5),
|
---|
45 | () => new UCTPolicy(1),
|
---|
46 | () => new UCTPolicy(2),
|
---|
47 | () => new UCTPolicy( 5),
|
---|
48 | () => new UCTPolicy( 10),
|
---|
49 | () => new UCB1Policy(),
|
---|
50 | () => new UCB1TunedPolicy(),
|
---|
51 | () => new UCBNormalPolicy(),
|
---|
52 | () => new BoltzmannExplorationPolicy(0.1),
|
---|
53 | () => new BoltzmannExplorationPolicy(0.5),
|
---|
54 | () => new BoltzmannExplorationPolicy(1),
|
---|
55 | () => new BoltzmannExplorationPolicy(5),
|
---|
56 | () => new BoltzmannExplorationPolicy(10),
|
---|
57 | () => new BoltzmannExplorationPolicy(20),
|
---|
58 | () => new BoltzmannExplorationPolicy(100),
|
---|
59 | () => new ChernoffIntervalEstimationPolicy( 0.01),
|
---|
60 | () => new ChernoffIntervalEstimationPolicy( 0.05),
|
---|
61 | () => new ChernoffIntervalEstimationPolicy( 0.1),
|
---|
62 | () => new ChernoffIntervalEstimationPolicy( 0.2),
|
---|
63 | // (rand) => new ThresholdAscentPolicy(10, 0.01),
|
---|
64 | // (rand) => new ThresholdAscentPolicy(10, 0.05),
|
---|
65 | // (rand) => new ThresholdAscentPolicy(10, 0.1),
|
---|
66 | // (rand) => new ThresholdAscentPolicy(10, 0.2),
|
---|
67 | // (rand) => new ThresholdAscentPolicy(100, 0.01),
|
---|
68 | // (rand) => new ThresholdAscentPolicy(100, 0.05),
|
---|
69 | // (rand) => new ThresholdAscentPolicy(100, 0.1),
|
---|
70 | // (rand) => new ThresholdAscentPolicy(100, 0.2),
|
---|
71 | // (rand) => new ThresholdAscentPolicy(1000, 0.01),
|
---|
72 | // (rand) => new ThresholdAscentPolicy(1000, 0.05),
|
---|
73 | // (rand) => new ThresholdAscentPolicy(1000, 0.1),
|
---|
74 | // (rand) => new ThresholdAscentPolicy(1000, 0.2),
|
---|
75 | // (rand) => new ThresholdAscentPolicy(5000, 0.01),
|
---|
76 | // (rand) => new ThresholdAscentPolicy(10000, 0.01),
|
---|
77 | };
|
---|
78 |
|
---|
79 | foreach (var problem in new Tuple<IProblem, int>[]
|
---|
80 | {
|
---|
81 | Tuple.Create((IProblem)new SantaFeAntProblem(), 17),
|
---|
82 | Tuple.Create((IProblem)new SymbolicRegressionPoly10Problem(), 23),
|
---|
83 | })
|
---|
84 | foreach (var randomTries in new int[] { 1, 10, /* 5, 100 /*, 500, 1000 */}) {
|
---|
85 | foreach (var policy in policies) {
|
---|
86 | var myRandomTries = randomTries;
|
---|
87 | var localRand = new Random(localRandSeed);
|
---|
88 | var options = new ParallelOptions();
|
---|
89 | options.MaxDegreeOfParallelism = 1;
|
---|
90 | Parallel.For(0, reps, options, (i) => {
|
---|
91 | //var t = Task.Run(() => {
|
---|
92 | Random myLocalRand;
|
---|
93 | lock (localRand)
|
---|
94 | myLocalRand = new Random(localRand.Next());
|
---|
95 |
|
---|
96 | //for (int i = 0; i < reps; i++) {
|
---|
97 |
|
---|
98 | int iterations = 0;
|
---|
99 | var globalStatistics = new SentenceSetStatistics();
|
---|
100 |
|
---|
101 | // var problem = new SymbolicRegressionPoly10Problem();
|
---|
102 | // var problem = new SantaFeAntProblem();
|
---|
103 | //var problem = new PalindromeProblem();
|
---|
104 | //var problem = new HardPalindromeProblem();
|
---|
105 | //var problem = new RoyalPairProblem();
|
---|
106 | //var problem = new EvenParityProblem();
|
---|
107 | var alg = new MctsSampler(problem.Item1, problem.Item2, myLocalRand, myRandomTries, policy()); // TODO: Make sure we generate the same random numbers for each experiment
|
---|
108 | //var alg = new ExhaustiveBreadthFirstSearch(problem, 25);
|
---|
109 | //var alg = new AlternativesContextSampler(problem, 25);
|
---|
110 |
|
---|
111 | alg.SolutionEvaluated += (sentence, quality) => {
|
---|
112 | iterations++;
|
---|
113 | globalStatistics.AddSentence(sentence, quality);
|
---|
114 | if (iterations % 10000 == 0) {
|
---|
115 | Console.WriteLine("{0,4} {1,7} {2,5} {3,25} {4}", alg.treeDepth, alg.treeSize, myRandomTries, policy(), globalStatistics);
|
---|
116 | }
|
---|
117 | };
|
---|
118 |
|
---|
119 |
|
---|
120 | alg.Run(maxIterations);
|
---|
121 |
|
---|
122 | //Console.WriteLine("{0,5} {1} {2}", randomTries, policyFactory(1), globalStatistics);
|
---|
123 | //}
|
---|
124 | //});
|
---|
125 | //tasks.Add(t);
|
---|
126 | });
|
---|
127 | }
|
---|
128 | }
|
---|
129 | //Task.WaitAll(tasks.ToArray());
|
---|
130 | }
|
---|
131 |
|
---|
132 | private static void RunDemo() {
|
---|
133 | // TODO: test with eps-greedy using max instead of average as value (seems to work well for symb-reg! explore further!)
|
---|
134 | // TODO: implement GaussianWithUnknownMeanAndVariance Model for Thompson Sampling (verify with unit test if correct mean and variance is identified)
|
---|
135 | // TODO: separate value function from policy
|
---|
136 | // TODO: debug and verify implementation variants of Gaussian Thompson Sampling with unit test
|
---|
137 | // TODO: refactor Policies to use banditInfos (policies are factories for bandit infos and bandit info only has an update routine, each policy works only with it's type of banditinfo)
|
---|
138 | // TODO: in contextual MCTS store a bandit info for each node in the _graph_ and also update all bandit infos of all parents
|
---|
139 | // TODO: exhaustive search with priority list
|
---|
140 | // TODO: warum funktioniert die alte Implementierung von GaussianThompson besser für SantaFe als alte? Siehe Vergleich: alte vs. neue implementierung GaussianThompsonSampling
|
---|
141 | // TODO: why does GaussianThompsonSampling work so well with MCTS for the artificial ant problem?
|
---|
142 | // TODO: wie kann ich sampler noch vergleichen bzw. was kann man messen um die qualität des samplers abzuschätzen (bis auf qualität und iterationen bis zur besten lösung) => ziel schnellere iterationen zu gutem ergebnis
|
---|
143 | // TODO: likelihood für R=1 bei Gaussian oder GaussianMixture einfach berechenbar?
|
---|
144 | // TODO: research thompson sampling for max bandit?
|
---|
145 | // TODO: ausführlicher test von strategien für k-armed max bandit
|
---|
146 | // TODO: verify TA implementation using example from the original paper
|
---|
147 | // TODO: compare results for different policies also for the symb-reg problem
|
---|
148 | // TODO: separate policy from MCTS tree data structure to allow sharing of information over disconnected parts of the tree (semantic equivalence)
|
---|
149 | // TODO: implement thompson sampling for gaussian mixture models
|
---|
150 | // TODO: implement inspection for MCTS (eventuell interactive command line für statistiken aus dem baum anzeigen)
|
---|
151 | // TODO: implement ACO-style bandit policy
|
---|
152 | // TODO: implement sequences that can be manipulated in-place (instead of strings), alternatives are also stored as sequences, for a sequence the index of the first NT-symb can be stored
|
---|
153 | // TODO: gleichzeitige modellierung von transformierter zielvariable (y, 1/y, log(y), exp(y), sqrt(y), ...)
|
---|
154 | // TODO: vergleich bei complete-randomly möglichst kurze sätze generieren vs. einfach zufällig alternativen wählen
|
---|
155 | // TODO: reward discounting (für veränderliche reward distributions über zeit). speziellen unit-test dafür erstellen
|
---|
156 | // TODO: constant optimization
|
---|
157 |
|
---|
158 |
|
---|
159 | int maxIterations = 100000;
|
---|
160 | int iterations = 0;
|
---|
161 | var sw = new Stopwatch();
|
---|
162 | double bestQuality = 0;
|
---|
163 | string bestSentence = "";
|
---|
164 | var globalStatistics = new SentenceSetStatistics();
|
---|
165 | var random = new Random();
|
---|
166 |
|
---|
167 | var problem = new SymbolicRegressionPoly10Problem();
|
---|
168 | //var problem = new SantaFeAntProblem(); // good results e.g. with var alg = new MctsSampler(problem, 17, random, 1, (rand, numActions) => new ThresholdAscentPolicy(numActions, 500, 0.01));
|
---|
169 | //var problem = new SymbolicRegressionProblem("Tower"); // very good results e.g. new EpsGreedyPolicy(0.2) using max reward as quality !!!
|
---|
170 | //var problem = new PalindromeProblem();
|
---|
171 | //var problem = new HardPalindromeProblem();
|
---|
172 | //var problem = new RoyalPairProblem();
|
---|
173 | //var problem = new EvenParityProblem();
|
---|
174 | var alg = new MctsSampler(problem, 23, random, 10, new EpsGreedyPolicy(0.2)); // GaussianModelWithUnknownVariance (and Q= 0.99-quantil) works well for Ant
|
---|
175 | //var alg = new ExhaustiveBreadthFirstSearch(problem, 17);
|
---|
176 | //var alg = new AlternativesContextSampler(problem, random, 17, 4, (rand, numActions) => new RandomPolicy(rand, numActions));
|
---|
177 | //var alg = new ExhaustiveDepthFirstSearch(problem, 17);
|
---|
178 | // var alg = new AlternativesSampler(problem, 17);
|
---|
179 | // var alg = new RandomSearch(problem, random, 17);
|
---|
180 | // var alg = new ExhaustiveRandomFirstSearch(problem, random, 17);
|
---|
181 |
|
---|
182 | alg.FoundNewBestSolution += (sentence, quality) => {
|
---|
183 | bestQuality = quality;
|
---|
184 | bestSentence = sentence;
|
---|
185 | Console.WriteLine("{0,4} {1,7} {2}", alg.treeDepth, alg.treeSize, globalStatistics);
|
---|
186 | };
|
---|
187 | alg.SolutionEvaluated += (sentence, quality) => {
|
---|
188 | iterations++;
|
---|
189 | globalStatistics.AddSentence(sentence, quality);
|
---|
190 | if (iterations % 1000 == 0) {
|
---|
191 | alg.PrintStats();
|
---|
192 | }
|
---|
193 | if (iterations % 10000 == 0) {
|
---|
194 | //Console.WriteLine("{0,10} {1,10:F5} {2,10:F5} {3}", iterations, bestQuality, quality, sentence);
|
---|
195 | //Console.WriteLine("{0,4} {1,7} {2}", alg.treeDepth, alg.treeSize, globalStatistics);
|
---|
196 | Console.WriteLine("{0,4} {1,7} {2}", alg.treeDepth, alg.treeSize, globalStatistics);
|
---|
197 | }
|
---|
198 | };
|
---|
199 |
|
---|
200 |
|
---|
201 | sw.Start();
|
---|
202 |
|
---|
203 | alg.Run(maxIterations);
|
---|
204 |
|
---|
205 | sw.Stop();
|
---|
206 |
|
---|
207 | Console.WriteLine("{0,10} Best soultion: {1,10:F5} {2}", iterations, bestQuality, bestSentence);
|
---|
208 | Console.WriteLine("{0:F2} sec {1,10:F1} sols/sec {2,10:F1} ns/sol",
|
---|
209 | sw.Elapsed.TotalSeconds,
|
---|
210 | maxIterations / (double)sw.Elapsed.TotalSeconds,
|
---|
211 | (double)sw.ElapsedMilliseconds * 1000 / maxIterations);
|
---|
212 | }
|
---|
213 | }
|
---|
214 | }
|
---|