1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Data;
|
---|
4 | using System.Diagnostics;
|
---|
5 | using System.Linq;
|
---|
6 | using System.Text;
|
---|
7 | using System.Threading.Tasks;
|
---|
8 | using HeuristicLab.Algorithms.Bandits;
|
---|
9 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
10 | using HeuristicLab.Problems.GrammaticalOptimization;
|
---|
11 |
|
---|
12 | namespace Main {
|
---|
13 | class Program {
|
---|
14 | static void Main(string[] args) {
|
---|
15 | // RunDemo();
|
---|
16 | RunGridTest();
|
---|
17 | }
|
---|
18 |
|
---|
19 | private static void RunGridTest() {
|
---|
20 | int maxIterations = 150000;
|
---|
21 | var globalRandom = new Random(31415);
|
---|
22 | var reps = 10;
|
---|
23 | Parallel.ForEach(new int[] { 1, 5, 10, 100, 500, 1000 }, (randomTries) => {
|
---|
24 | Random localRand;
|
---|
25 | lock (globalRandom) {
|
---|
26 | localRand = new Random(globalRandom.Next());
|
---|
27 | }
|
---|
28 | var policyFactories = new Func<int, IPolicy>[]
|
---|
29 | {
|
---|
30 | (numActions) => new RandomPolicy(localRand, numActions),
|
---|
31 | (numActions) => new UCB1Policy(numActions),
|
---|
32 | (numActions) => new UCB1TunedPolicy(numActions),
|
---|
33 | (numActions) => new UCBNormalPolicy(numActions),
|
---|
34 | (numActions) => new EpsGreedyPolicy(localRand, numActions, 0.01),
|
---|
35 | (numActions) => new EpsGreedyPolicy(localRand, numActions, 0.05),
|
---|
36 | (numActions) => new EpsGreedyPolicy(localRand, numActions, 0.1),
|
---|
37 | (numActions) => new EpsGreedyPolicy(localRand, numActions, 0.2),
|
---|
38 | (numActions) => new EpsGreedyPolicy(localRand, numActions, 0.5),
|
---|
39 | (numActions) => new GaussianThompsonSamplingPolicy(localRand, numActions),
|
---|
40 | (numActions) => new BernoulliThompsonSamplingPolicy(localRand, numActions)
|
---|
41 | };
|
---|
42 |
|
---|
43 | foreach (var policyFactory in policyFactories)
|
---|
44 | for (int i = 0; i < reps; i++) {
|
---|
45 | int iterations = 0;
|
---|
46 | var sw = new Stopwatch();
|
---|
47 | var globalStatistics = new SentenceSetStatistics();
|
---|
48 |
|
---|
49 | // var problem = new SymbolicRegressionPoly10Problem();
|
---|
50 | var problem = new SantaFeAntProblem();
|
---|
51 | //var problem = new PalindromeProblem();
|
---|
52 | //var problem = new HardPalindromeProblem();
|
---|
53 | //var problem = new RoyalPairProblem();
|
---|
54 | //var problem = new EvenParityProblem();
|
---|
55 | var alg = new MctsSampler(problem, 17, localRand, randomTries, policyFactory);
|
---|
56 | //var alg = new ExhaustiveBreadthFirstSearch(problem, 25);
|
---|
57 | //var alg = new AlternativesContextSampler(problem, 25);
|
---|
58 |
|
---|
59 | alg.SolutionEvaluated += (sentence, quality) => {
|
---|
60 | iterations++;
|
---|
61 | globalStatistics.AddSentence(sentence, quality);
|
---|
62 | if (iterations % 10000 == 0) {
|
---|
63 | Console.WriteLine("{0} {1} {2}", randomTries, policyFactory(1), globalStatistics);
|
---|
64 | }
|
---|
65 | };
|
---|
66 |
|
---|
67 | sw.Start();
|
---|
68 |
|
---|
69 | alg.Run(maxIterations);
|
---|
70 |
|
---|
71 | sw.Stop();
|
---|
72 | }
|
---|
73 | });
|
---|
74 | }
|
---|
75 |
|
---|
76 | private static void RunDemo() {
|
---|
77 | // TODO: implement threshold ascent
|
---|
78 | // TODO: implement inspection for MCTS
|
---|
79 |
|
---|
80 | int maxIterations = 10000000;
|
---|
81 | int iterations = 0;
|
---|
82 | var sw = new Stopwatch();
|
---|
83 | double bestQuality = 0;
|
---|
84 | string bestSentence = "";
|
---|
85 | var globalStatistics = new SentenceSetStatistics();
|
---|
86 | var random = new Random(31415);
|
---|
87 |
|
---|
88 | // var problem = new SymbolicRegressionPoly10Problem();
|
---|
89 | var problem = new SantaFeAntProblem();
|
---|
90 | //var problem = new PalindromeProblem();
|
---|
91 | //var problem = new HardPalindromeProblem();
|
---|
92 | //var problem = new RoyalPairProblem();
|
---|
93 | //var problem = new EvenParityProblem();
|
---|
94 | var alg = new MctsSampler(problem, 17, random);
|
---|
95 | //var alg = new ExhaustiveBreadthFirstSearch(problem, 25);
|
---|
96 | //var alg = new AlternativesContextSampler(problem, 25);
|
---|
97 |
|
---|
98 | alg.FoundNewBestSolution += (sentence, quality) => {
|
---|
99 | bestQuality = quality;
|
---|
100 | bestSentence = sentence;
|
---|
101 | Console.WriteLine("{0,10} {1,10:F5} {2,10:F5} {3}", iterations, bestQuality, quality, sentence);
|
---|
102 | };
|
---|
103 | alg.SolutionEvaluated += (sentence, quality) => {
|
---|
104 | iterations++;
|
---|
105 | globalStatistics.AddSentence(sentence, quality);
|
---|
106 | if (iterations % 10000 == 0) {
|
---|
107 | //Console.WriteLine("{0,10} {1,10:F5} {2,10:F5} {3}", iterations, bestQuality, quality, sentence);
|
---|
108 | Console.WriteLine(globalStatistics.ToString());
|
---|
109 | }
|
---|
110 | };
|
---|
111 |
|
---|
112 |
|
---|
113 | sw.Start();
|
---|
114 |
|
---|
115 | alg.Run(maxIterations);
|
---|
116 |
|
---|
117 | sw.Stop();
|
---|
118 |
|
---|
119 | Console.WriteLine("{0,10} Best soultion: {1,10:F5} {2}", iterations, bestQuality, bestSentence);
|
---|
120 | Console.WriteLine("{0:F2} sec {1,10:F1} sols/sec {2,10:F1} ns/sol",
|
---|
121 | sw.Elapsed.TotalSeconds,
|
---|
122 | maxIterations / (double)sw.Elapsed.TotalSeconds,
|
---|
123 | (double)sw.ElapsedMilliseconds * 1000 / maxIterations);
|
---|
124 | }
|
---|
125 | }
|
---|
126 | }
|
---|