Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Problems.GrammaticalOptimization.SymbReg/SymbolicRegressionProblem.cs @ 11972

Last change on this file since 11972 was 11972, checked in by gkronber, 10 years ago

#2283 new experiments

File size: 9.6 KB
Line 
1using System;
2using System.CodeDom.Compiler;
3using System.Collections.Generic;
4using System.Diagnostics;
5using System.Linq;
6using System.Security;
7using System.Security.AccessControl;
8using System.Security.Authentication.ExtendedProtection.Configuration;
9using System.Text;
10using AutoDiff;
11using HeuristicLab.Common;
12using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
13using HeuristicLab.Problems.DataAnalysis;
14using HeuristicLab.Problems.Instances;
15using HeuristicLab.Problems.Instances.DataAnalysis;
16
17namespace HeuristicLab.Problems.GrammaticalOptimization.SymbReg {
18  // provides bridge to HL regression problem instances
19  public class SymbolicRegressionProblem : ISymbolicExpressionTreeProblem {
20
21    // C represents Koza-style ERC (the symbol is the index of the ERC), the values are initialized below
22    private const string grammarString = @"
23        G(E):
24        E -> V | C | V+E | V-E | V*E | V%E | (E) | C+E | C-E | C*E | C%E
25        C -> 0..9
26        V -> <variables>
27        ";
28
29    // when using constant opt optimal constants are generated in the evaluation step so we don't need them in the grammar
30    private const string grammarConstOptString = @"
31        G(E):
32        E -> V | V+E | V*E | V%E | (E)
33        V -> <variables>
34        ";
35
36    // S .. Sum (+), N .. Neg. sum (-), P .. Product (*), D .. Division (%)
37    private const string treeGrammarString = @"
38        G(E):
39        E -> V | C | S | N | P | D
40        S -> EE | EEE
41        N -> EE | EEE
42        P -> EE | EEE
43        D -> EE
44        C -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
45        V -> <variables>
46        ";
47    private const string treeGrammarConstOptString = @"
48        G(E):
49        E -> V | S | P | D
50        S -> EE | EEE
51        P -> EE | EEE
52        D -> EE
53        V -> <variables>
54        ";
55
56    // when we use constants optimization we can completely ignore all constants by a simple strategy:
57    // introduce a constant factor for each complete term
58    // introduce a constant offset for each complete expression (including expressions in brackets)
59    // e.g. 1*(2*a + b - 3 + 4) is the same as c0*a + c1*b + c2
60
61    private readonly IGrammar grammar;
62
63    private readonly int N;
64    private readonly double[,] x;
65    private readonly double[] y;
66    private readonly int d;
67    private readonly double[] erc;
68    private readonly bool useConstantOpt;
69
70
71    public SymbolicRegressionProblem(Random random, string partOfName, bool useConstantOpt = true) {
72      var instanceProviders = new RegressionInstanceProvider[]
73      {new RegressionRealWorldInstanceProvider(),
74        new HeuristicLab.Problems.Instances.DataAnalysis.VariousInstanceProvider(),
75        new KeijzerInstanceProvider(),
76        new VladislavlevaInstanceProvider(),
77        new NguyenInstanceProvider(),
78        new KornsInstanceProvider(),
79    };
80      var instanceProvider = instanceProviders.FirstOrDefault(prov => prov.GetDataDescriptors().Any(dd => dd.Name.Contains(partOfName)));
81      if (instanceProvider == null) throw new ArgumentException("instance not found");
82
83      this.useConstantOpt = useConstantOpt;
84
85      var dds = instanceProvider.GetDataDescriptors();
86      var problemData = instanceProvider.LoadData(dds.Single(ds => ds.Name.Contains(partOfName)));
87
88      this.N = problemData.TrainingIndices.Count();
89      this.d = problemData.AllowedInputVariables.Count();
90      if (d > 26) throw new NotSupportedException(); // we only allow single-character terminal symbols so far
91      this.x = new double[N, d];
92      this.y = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray();
93
94      int i = 0;
95      foreach (var r in problemData.TrainingIndices) {
96        int j = 0;
97        foreach (var inputVariable in problemData.AllowedInputVariables) {
98          x[i, j++] = problemData.Dataset.GetDoubleValue(inputVariable, r);
99        }
100        i++;
101      }
102      // initialize ERC values
103      erc = Enumerable.Range(0, 10).Select(_ => Rand.RandNormal(random) * 10).ToArray();
104
105      char firstVar = 'a';
106      char lastVar = Convert.ToChar(Convert.ToByte('a') + d - 1);
107      if (!useConstantOpt) {
108        this.grammar = new Grammar(grammarString.Replace("<variables>", firstVar + " .. " + lastVar));
109        this.TreeBasedGPGrammar = new Grammar(treeGrammarString.Replace("<variables>", firstVar + " .. " + lastVar));
110      } else {
111        this.grammar = new Grammar(grammarConstOptString.Replace("<variables>", firstVar + " .. " + lastVar));
112        this.TreeBasedGPGrammar = new Grammar(treeGrammarConstOptString.Replace("<variables>", firstVar + " .. " + lastVar));
113      }
114    }
115
116
117    public double BestKnownQuality(int maxLen) {
118      // for now only an upper bound is returned, ideally we have an R² of 1.0
119      return 1.0;
120    }
121
122    public IGrammar Grammar {
123      get { return grammar; }
124    }
125
126    public double Evaluate(string sentence) {
127      if (useConstantOpt)
128        return OptimizeConstantsAndEvaluate(sentence);
129      else {
130        return SimpleEvaluate(sentence);
131      }
132    }
133
134    public double SimpleEvaluate(string sentence) {
135      var interpreter = new ExpressionInterpreter();
136      var rowData = new double[d];
137      return HeuristicLab.Common.Extensions.RSq(y, Enumerable.Range(0, N).Select(i => {
138        for (int j = 0; j < d; j++) rowData[j] = x[i, j];
139        return interpreter.Interpret(sentence, rowData, erc);
140      }));
141    }
142
143
144    public string CanonicalRepresentation(string phrase) {
145      return phrase;
146    }
147
148    public IEnumerable<Feature> GetFeatures(string phrase) {
149      // first generate canonical expression (which must not contain ())
150      // recursively split into expressions
151      // for each expression split into terms
152      // for each term order factors to canonical // ../E = * 1/E
153      return new Feature[] { new Feature(phrase, 1.0) };
154    }
155
156
157
158    public double OptimizeConstantsAndEvaluate(string sentence) {
159      AutoDiff.Term func;
160      int pos = 0;
161      int n = x.GetLength(0);
162      int m = x.GetLength(1);
163
164      var compiler = new ExpressionCompiler();
165      Variable[] variables = Enumerable.Range(0, m).Select(_ => new Variable()).ToArray();
166      Variable[] constants;
167      compiler.Compile(sentence, out func, variables, out constants);
168
169      // constants are manipulated
170
171      if (!constants.Any()) return SimpleEvaluate(sentence);
172
173      AutoDiff.IParametricCompiledTerm compiledFunc = func.Compile(constants, variables); // variate constants leave variables fixed to data
174
175      double[] c = constants.Select(_ => 1.0).ToArray(); // start with ones
176
177      alglib.lsfitstate state;
178      alglib.lsfitreport rep;
179      int info;
180
181
182      int k = c.Length;
183
184      alglib.ndimensional_pfunc function_cx_1_func = CreatePFunc(compiledFunc);
185      alglib.ndimensional_pgrad function_cx_1_grad = CreatePGrad(compiledFunc);
186
187      const int maxIterations = 10;
188      try {
189        alglib.lsfitcreatefg(x, y, c, n, m, k, false, out state);
190        alglib.lsfitsetcond(state, 0.0, 0.0, maxIterations);
191        //alglib.lsfitsetgradientcheck(state, 0.001);
192        alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, null, null);
193        alglib.lsfitresults(state, out info, out c, out rep);
194      } catch (ArithmeticException) {
195        return 0.0;
196      } catch (alglib.alglibexception) {
197        return 0.0;
198      }
199
200      //info == -7  => constant optimization failed due to wrong gradient
201      if (info == -7) throw new ArgumentException();
202      {
203        var rowData = new double[d];
204        return HeuristicLab.Common.Extensions.RSq(y, Enumerable.Range(0, N).Select(i => {
205          for (int j = 0; j < d; j++) rowData[j] = x[i, j];
206          return compiledFunc.Evaluate(c, rowData);
207        }));
208      }
209    }
210
211
212    private static alglib.ndimensional_pfunc CreatePFunc(AutoDiff.IParametricCompiledTerm compiledFunc) {
213      return (double[] c, double[] x, ref double func, object o) => {
214        func = compiledFunc.Evaluate(c, x);
215      };
216    }
217
218    private static alglib.ndimensional_pgrad CreatePGrad(AutoDiff.IParametricCompiledTerm compiledFunc) {
219      return (double[] c, double[] x, ref double func, double[] grad, object o) => {
220        var tupel = compiledFunc.Differentiate(c, x);
221        func = tupel.Item2;
222        Array.Copy(tupel.Item1, grad, grad.Length);
223      };
224    }
225
226    public IGrammar TreeBasedGPGrammar { get; private set; }
227    public string ConvertTreeToSentence(ISymbolicExpressionTree tree) {
228      var sb = new StringBuilder();
229
230      TreeToSentence(tree.Root.GetSubtree(0).GetSubtree(0), sb);
231
232      return sb.ToString();
233    }
234
235
236    private void TreeToSentence(ISymbolicExpressionTreeNode treeNode, StringBuilder sb) {
237      if (treeNode.SubtreeCount == 0) {
238        // terminal
239        sb.Append(treeNode.Symbol.Name);
240      } else {
241        string op = string.Empty;
242        switch (treeNode.Symbol.Name) {
243          case "S": op = "+"; break;
244          case "N": op = "-"; break;
245          case "P": op = "*"; break;
246          case "D": op = "%"; break;
247          default: {
248              Debug.Assert(treeNode.SubtreeCount == 1);
249              break;
250            }
251        }
252        // nonterminal
253        if (treeNode.SubtreeCount > 1) sb.Append("(");
254        TreeToSentence(treeNode.Subtrees.First(), sb);
255        foreach (var subTree in treeNode.Subtrees.Skip(1)) {
256          sb.Append(op);
257          TreeToSentence(subTree, sb);
258        }
259        if (treeNode.SubtreeCount > 1) sb.Append(")");
260      }
261    }
262  }
263}
Note: See TracBrowser for help on using the repository browser.