1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using System.Text;
|
---|
5 | using System.Threading.Tasks;
|
---|
6 | using HeuristicLab.Common;
|
---|
7 |
|
---|
8 | namespace HeuristicLab.Algorithms.Bandits {
|
---|
9 | // uses a gaussian mixture reward distribution for each arm
|
---|
10 | public class GaussianMixtureBandit : IBandit {
|
---|
11 | public int NumArms { get; private set; }
|
---|
12 | public double OptimalExpectedReward { get; private set; } // reward of the best arm, for calculating regret
|
---|
13 | public int OptimalExpectedRewardArm { get; private set; }
|
---|
14 | public int OptimalMaximalRewardArm { get; private set; }
|
---|
15 |
|
---|
16 | private readonly Random random;
|
---|
17 | private readonly double[] expReward; // for each component components
|
---|
18 | private readonly double[][] componentProb; // arms x components
|
---|
19 | public GaussianMixtureBandit(Random random, int nArms) {
|
---|
20 | this.random = random;
|
---|
21 | this.NumArms = nArms;
|
---|
22 | var numComponents = 0;
|
---|
23 | expReward = new double[] { 0.1, 0.3, 0.5, 0.7, 0.9 };
|
---|
24 | componentProb = new double[nArms][];
|
---|
25 | OptimalExpectedReward = double.NegativeInfinity;
|
---|
26 | // decide on optimal arm
|
---|
27 | OptimalMaximalRewardArm = random.Next(NumArms);
|
---|
28 | OptimalExpectedRewardArm = OptimalMaximalRewardArm;
|
---|
29 | for (int i = 0; i < nArms; i++) {
|
---|
30 | componentProb[i] = new double[numComponents];
|
---|
31 | if (i == OptimalMaximalRewardArm) {
|
---|
32 | componentProb[i] = new double[] { 0.24, 0.24, 0.24, 0.24, 0.04 };
|
---|
33 | } else {
|
---|
34 | componentProb[i] = new double[] { 0.25, 0.25, 0.25, 0.25, 0 };
|
---|
35 | }
|
---|
36 | }
|
---|
37 |
|
---|
38 | OptimalExpectedReward = Enumerable.Range(0, 100000).Select(_ => Pull(OptimalExpectedRewardArm)).Average();
|
---|
39 | }
|
---|
40 |
|
---|
41 | // std.dev = 0.1
|
---|
42 | // and truncation to the interval [0..1]
|
---|
43 | public double Pull(int arm) {
|
---|
44 | double x = 0;
|
---|
45 | do {
|
---|
46 | var k = Enumerable.Range(0, componentProb[arm].Length).SampleProportional(random, componentProb[arm]);
|
---|
47 |
|
---|
48 | var z = Rand.RandNormal(random);
|
---|
49 | x = z * 0.1 + expReward[k];
|
---|
50 | }
|
---|
51 | while (x < 0 || x > 1);
|
---|
52 | return x;
|
---|
53 | }
|
---|
54 | }
|
---|
55 | }
|
---|