Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GrammaticalOptimization/HeuristicLab.Problems.Bandits/GaussianMixtureBandit.cs @ 12657

Last change on this file since 12657 was 11849, checked in by gkronber, 10 years ago

#2283: solution reorganization

File size: 2.0 KB
RevLine 
[11731]1using System;
2using System.Collections.Generic;
3using System.Linq;
4using System.Text;
5using System.Threading.Tasks;
6using HeuristicLab.Common;
7
8namespace HeuristicLab.Algorithms.Bandits {
9  // uses a gaussian mixture reward distribution for each arm
10  public class GaussianMixtureBandit : IBandit {
11    public int NumArms { get; private set; }
12    public double OptimalExpectedReward { get; private set; } // reward of the best arm, for calculating regret
13    public int OptimalExpectedRewardArm { get; private set; }
14    public int OptimalMaximalRewardArm { get; private set; }
15
16    private readonly Random random;
17    private readonly double[] expReward; // for each component components
18    private readonly double[][] componentProb; // arms x components
19    public GaussianMixtureBandit(Random random, int nArms) {
20      this.random = random;
21      this.NumArms = nArms;
22      var numComponents = 0;
23      expReward = new double[] { 0.1, 0.3, 0.5, 0.7, 0.9 };
24      componentProb = new double[nArms][];
25      OptimalExpectedReward = double.NegativeInfinity;
26      // decide on optimal arm
27      OptimalMaximalRewardArm = random.Next(NumArms);
28      OptimalExpectedRewardArm = OptimalMaximalRewardArm;
29      for (int i = 0; i < nArms; i++) {
30        componentProb[i] = new double[numComponents];
31        if (i == OptimalMaximalRewardArm) {
32          componentProb[i] = new double[] { 0.24, 0.24, 0.24, 0.24, 0.04 };
33        } else {
34          componentProb[i] = new double[] { 0.25, 0.25, 0.25, 0.25, 0 };
35        }
36      }
37
38      OptimalExpectedReward = Enumerable.Range(0, 100000).Select(_ => Pull(OptimalExpectedRewardArm)).Average();
39    }
40
41    // std.dev = 0.1
42    // and truncation to the interval [0..1]
43    public double Pull(int arm) {
44      double x = 0;
45      do {
[11799]46        var k = Enumerable.Range(0, componentProb[arm].Length).SampleProportional(random, componentProb[arm]);
[11731]47
48        var z = Rand.RandNormal(random);
49        x = z * 0.1 + expReward[k];
50      }
51      while (x < 0 || x > 1);
52      return x;
53    }
54  }
55}
Note: See TracBrowser for help on using the repository browser.