Rev | Line | |
---|
[11710] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using System.Text;
|
---|
| 5 | using System.Threading.Tasks;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Algorithms.Bandits {
|
---|
[11730] | 8 | public class BernoulliBandit : IBandit {
|
---|
[11710] | 9 | public int NumArms { get; private set; }
|
---|
| 10 | public double OptimalExpectedReward { get; private set; } // reward of the best arm, for calculating regret
|
---|
[11730] | 11 | public int OptimalExpectedRewardArm { get; private set; }
|
---|
| 12 | // the arm with highest expected reward also has the highest probability of return a reward of 1.0
|
---|
| 13 | public int OptimalMaximalRewardArm { get { return OptimalExpectedRewardArm; } }
|
---|
| 14 |
|
---|
[11710] | 15 | private readonly Random random;
|
---|
| 16 | private readonly double[] expReward;
|
---|
| 17 | public BernoulliBandit(Random random, int nArms) {
|
---|
| 18 | this.random = random;
|
---|
| 19 | this.NumArms = nArms;
|
---|
| 20 | // expected reward of arms is iid and uniformly distributed
|
---|
| 21 | expReward = new double[nArms];
|
---|
| 22 | OptimalExpectedReward = double.NegativeInfinity;
|
---|
| 23 | for (int i = 0; i < nArms; i++) {
|
---|
| 24 | expReward[i] = random.NextDouble();
|
---|
[11730] | 25 | if (expReward[i] > OptimalExpectedReward) {
|
---|
| 26 | OptimalExpectedReward = expReward[i];
|
---|
| 27 | OptimalExpectedRewardArm = i;
|
---|
| 28 | }
|
---|
[11710] | 29 | }
|
---|
| 30 | }
|
---|
| 31 |
|
---|
| 32 | // pulling an arm results in a bernoulli distributed reward
|
---|
| 33 | // with mean expReward[i]
|
---|
| 34 | public double Pull(int arm) {
|
---|
| 35 | return random.NextDouble() <= expReward[arm] ? 1 : 0;
|
---|
| 36 | }
|
---|
| 37 | }
|
---|
| 38 | }
|
---|
Note: See
TracBrowser
for help on using the repository browser.