[11730] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Diagnostics;
|
---|
| 4 | using System.Linq;
|
---|
| 5 | using System.Text;
|
---|
| 6 | using System.Threading.Tasks;
|
---|
| 7 | using HeuristicLab.Common;
|
---|
| 8 |
|
---|
| 9 | namespace HeuristicLab.Algorithms.Bandits.Models {
|
---|
| 10 | public class GaussianMixtureModel : IModel {
|
---|
[11747] | 11 | private double[] componentMeans;
|
---|
| 12 | private double[] componentVars;
|
---|
| 13 | private double[] componentProbs;
|
---|
| 14 | private readonly List<double> allRewards = new List<double>();
|
---|
[11730] | 15 |
|
---|
| 16 | private int numComponents;
|
---|
| 17 |
|
---|
[11744] | 18 | public GaussianMixtureModel(int nComponents = 5) {
|
---|
[11730] | 19 | this.numComponents = nComponents;
|
---|
[11747] | 20 |
|
---|
| 21 | Reset();
|
---|
[11730] | 22 | }
|
---|
| 23 |
|
---|
| 24 |
|
---|
[11851] | 25 | public double Sample(Random random) {
|
---|
[11799] | 26 | var k = Enumerable.Range(0, numComponents).SampleProportional(random, componentProbs);
|
---|
[11744] | 27 | return alglib.invnormaldistribution(random.NextDouble()) * Math.Sqrt(componentVars[k]) + componentMeans[k];
|
---|
[11730] | 28 | }
|
---|
| 29 |
|
---|
[11744] | 30 | public void Update(double reward) {
|
---|
[11747] | 31 | allRewards.Add(reward);
|
---|
| 32 | throw new NotSupportedException("this does not yet work");
|
---|
| 33 | if (allRewards.Count < 1000 && allRewards.Count % 10 == 0) {
|
---|
| 34 | // see http://www.cs.toronto.edu/~mackay/itprnn/ps/302.320.pdf Algorithm 22.2 soft k-means
|
---|
| 35 | Reset();
|
---|
| 36 | for (int i = 0; i < 20; i++) {
|
---|
| 37 | var responsibilities = allRewards.Select(r => CalcResponsibility(r)).ToArray();
|
---|
| 38 |
|
---|
| 39 |
|
---|
| 40 | var sumWeightedRewards = new double[numComponents];
|
---|
| 41 | var sumResponsibilities = new double[numComponents];
|
---|
| 42 | foreach (var p in allRewards.Zip(responsibilities, Tuple.Create)) {
|
---|
| 43 | for (int k = 0; k < numComponents; k++) {
|
---|
| 44 | sumWeightedRewards[k] += p.Item2[k] * p.Item1;
|
---|
| 45 | sumResponsibilities[k] += p.Item2[k];
|
---|
| 46 | }
|
---|
| 47 | }
|
---|
| 48 | for (int k = 0; k < numComponents; k++) {
|
---|
| 49 | componentMeans[k] = sumWeightedRewards[k] / sumResponsibilities[k];
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | sumWeightedRewards = new double[numComponents];
|
---|
| 53 | foreach (var p in allRewards.Zip(responsibilities, Tuple.Create)) {
|
---|
| 54 | for (int k = 0; k < numComponents; k++) {
|
---|
| 55 | sumWeightedRewards[k] += p.Item2[k] * Math.Pow(p.Item1 - componentMeans[k], 2);
|
---|
| 56 | }
|
---|
| 57 | }
|
---|
| 58 | for (int k = 0; k < numComponents; k++) {
|
---|
| 59 | componentVars[k] = sumWeightedRewards[k] / sumResponsibilities[k];
|
---|
| 60 | componentProbs[k] = sumResponsibilities[k] / sumResponsibilities.Sum();
|
---|
| 61 | }
|
---|
| 62 | }
|
---|
| 63 | }
|
---|
[11730] | 64 | }
|
---|
| 65 |
|
---|
[11747] | 66 | private double[] CalcResponsibility(double r) {
|
---|
| 67 | var res = new double[numComponents];
|
---|
| 68 | for (int k = 0; k < numComponents; k++) {
|
---|
| 69 | componentVars[k] = Math.Max(componentVars[k], 0.001);
|
---|
| 70 | res[k] = componentProbs[k] * alglib.normaldistribution((r - componentMeans[k]) / Math.Sqrt(componentVars[k]));
|
---|
| 71 | res[k] = Math.Max(res[k], 0.0001);
|
---|
| 72 | }
|
---|
| 73 | var sum = res.Sum();
|
---|
| 74 | for (int k = 0; k < numComponents; k++) {
|
---|
| 75 | res[k] /= sum;
|
---|
| 76 | }
|
---|
| 77 | return res;
|
---|
| 78 | }
|
---|
| 79 |
|
---|
[11744] | 80 | public void Disable() {
|
---|
| 81 | Array.Clear(componentMeans, 0, numComponents);
|
---|
| 82 | for (int i = 0; i < numComponents; i++)
|
---|
| 83 | componentVars[i] = 0.0;
|
---|
[11730] | 84 | }
|
---|
| 85 |
|
---|
[11744] | 86 | public object Clone() {
|
---|
| 87 | return new GaussianMixtureModel(numComponents);
|
---|
| 88 | }
|
---|
| 89 |
|
---|
[11730] | 90 | public void Reset() {
|
---|
[11747] | 91 | var rand = new Random();
|
---|
| 92 | this.componentProbs = Enumerable.Range(0, numComponents).Select((_) => rand.NextDouble()).ToArray();
|
---|
| 93 | var sum = componentProbs.Sum();
|
---|
| 94 | for (int i = 0; i < componentProbs.Length; i++) componentProbs[i] /= sum;
|
---|
| 95 | this.componentMeans = Enumerable.Range(0, numComponents).Select((_) => Rand.RandNormal(rand)).ToArray();
|
---|
| 96 | this.componentVars = Enumerable.Range(0, numComponents).Select((_) => 0.01).ToArray();
|
---|
[11730] | 97 | }
|
---|
| 98 | }
|
---|
| 99 | }
|
---|