[11727] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using System.Text;
|
---|
| 5 | using System.Threading.Tasks;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Common {
|
---|
| 8 | // code from Tom Minka's lightspeed toolbox (random.c)
|
---|
| 9 | // original copyright:
|
---|
| 10 | // Written by Tom Minka
|
---|
| 11 | // (c) Microsoft Corporation. All rights reserved.
|
---|
| 12 | public static class Rand {
|
---|
| 13 |
|
---|
| 14 | /* Returns a sample from Normal(0,1) */
|
---|
| 15 |
|
---|
| 16 | public static double RandNormal(Random random) {
|
---|
| 17 | double x, y, radius;
|
---|
| 18 | /* Generate a random point inside the unit circle */
|
---|
| 19 | do {
|
---|
| 20 | x = 2 * random.NextDouble() - 1;
|
---|
| 21 | y = 2 * random.NextDouble() - 1;
|
---|
| 22 | radius = (x * x) + (y * y);
|
---|
| 23 | } while ((radius >= 1.0) || (radius == 0.0));
|
---|
| 24 | /* Box-Muller formula */
|
---|
| 25 | radius = Math.Sqrt(-2 * Math.Log(radius) / radius);
|
---|
| 26 | x *= radius;
|
---|
| 27 | return x;
|
---|
| 28 | }
|
---|
| 29 |
|
---|
| 30 |
|
---|
| 31 | /* Returns a sample from Gamma(a, 1).
|
---|
| 32 | * For Gamma(a,b), scale the result by b.
|
---|
| 33 | */
|
---|
[11732] | 34 | public static double GammaRand(Random random, double a) {
|
---|
[11727] | 35 | /* Algorithm:
|
---|
| 36 | * G. Marsaglia and W.W. Tsang, A simple method for generating gamma
|
---|
| 37 | * variables, ACM Transactions on Mathematical Software, Vol. 26, No. 3,
|
---|
| 38 | * Pages 363-372, September, 2000.
|
---|
| 39 | * http://portal.acm.org/citation.cfm?id=358414
|
---|
| 40 | */
|
---|
| 41 | double boost, d, c, v;
|
---|
| 42 | if (a < 1) {
|
---|
| 43 | /* boost using Marsaglia's (1961) method: gam(a) = gam(a+1)*U^(1/a) */
|
---|
| 44 | boost = Math.Exp(Math.Log(random.NextDouble()) / a);
|
---|
| 45 | a++;
|
---|
| 46 | } else boost = 1;
|
---|
| 47 | d = a - 1.0 / 3; c = 1.0 / Math.Sqrt(9 * d);
|
---|
| 48 | while (true) {
|
---|
| 49 | double x, u;
|
---|
| 50 | do {
|
---|
| 51 | x = RandNormal(random);
|
---|
| 52 | v = 1 + c * x;
|
---|
| 53 | } while (v <= 0);
|
---|
| 54 | v = v * v * v;
|
---|
| 55 | x = x * x;
|
---|
| 56 | u = random.NextDouble();
|
---|
| 57 | if ((u < 1 - .0331 * x * x) ||
|
---|
| 58 | (Math.Log(u) < 0.5 * x + d * (1 - v + Math.Log(v)))) break;
|
---|
| 59 | }
|
---|
| 60 | return (boost * d * v);
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | /* Returns a sample from Beta(a,b) */
|
---|
| 64 | public static double BetaRand(Random random, double a, double b) {
|
---|
| 65 | double g = GammaRand(random, a);
|
---|
| 66 | return g / (g + GammaRand(random, b));
|
---|
| 67 | }
|
---|
| 68 | }
|
---|
| 69 | }
|
---|