1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.ComponentModel;
|
---|
4 | using System.Diagnostics;
|
---|
5 | using System.Linq;
|
---|
6 | using System.Text;
|
---|
7 | using System.Threading.Tasks;
|
---|
8 | using System.Windows;
|
---|
9 | using System.Windows.Controls;
|
---|
10 | using System.Windows.Data;
|
---|
11 | using System.Windows.Documents;
|
---|
12 | using System.Windows.Input;
|
---|
13 | using System.Windows.Media;
|
---|
14 | using System.Windows.Media.Imaging;
|
---|
15 | using System.Windows.Navigation;
|
---|
16 | using System.Windows.Shapes;
|
---|
17 | using System.Windows.Threading;
|
---|
18 | using Evaluation.ViewModel;
|
---|
19 | using HeuristicLab.Algorithms.Bandits;
|
---|
20 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
21 | using HeuristicLab.Algorithms.GeneticProgramming;
|
---|
22 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
23 | using HeuristicLab.Algorithms.MonteCarloTreeSearch;
|
---|
24 | using HeuristicLab.Algorithms.MonteCarloTreeSearch.Simulation;
|
---|
25 | using HeuristicLab.Problems.GrammaticalOptimization;
|
---|
26 | using Microsoft.Research.DynamicDataDisplay;
|
---|
27 | using Microsoft.Research.DynamicDataDisplay.DataSources;
|
---|
28 |
|
---|
29 | namespace Evaluation
|
---|
30 | {
|
---|
31 | /// <summary>
|
---|
32 | /// Interaction logic for MainWindow.xaml
|
---|
33 | /// </summary>
|
---|
34 | public partial class MainWindow : Window
|
---|
35 | {
|
---|
36 | private BackgroundWorker worker = new BackgroundWorker();
|
---|
37 | private EvaluationViewModel vm;
|
---|
38 | private List<EvaluationStat> stats = new List<EvaluationStat>();
|
---|
39 |
|
---|
40 | private Stack<EvaluationStat> newStats = new Stack<EvaluationStat>();
|
---|
41 | private DispatcherTimer updateCollectionTimer;
|
---|
42 |
|
---|
43 | public MainWindow()
|
---|
44 | {
|
---|
45 | InitializeComponent();
|
---|
46 | this.DataContext = vm = new EvaluationViewModel();
|
---|
47 | this.worker.WorkerSupportsCancellation = true;
|
---|
48 | this.worker.DoWork += worker_DoWork;
|
---|
49 | this.worker.ProgressChanged += worker_ProgressChanged;
|
---|
50 | this.worker.RunWorkerCompleted += worker_RunWorkerCompleted;
|
---|
51 |
|
---|
52 | ////updateCollectionTimer = new DispatcherTimer();
|
---|
53 | ////updateCollectionTimer.Interval = TimeSpan.FromMilliseconds(100);
|
---|
54 | ////updateCollectionTimer.Tick += updateCollectionTimer_Tick;
|
---|
55 | ////updateCollectionTimer.Start();
|
---|
56 |
|
---|
57 | vm.HorizontalAxisString = "Evaluations";
|
---|
58 | vm.VerticalAxisString = "BestKnownQuality";
|
---|
59 |
|
---|
60 | }
|
---|
61 |
|
---|
62 | ////void updateCollectionTimer_Tick(object sender, EventArgs e)
|
---|
63 | ////{
|
---|
64 | //// while (newStats.Count > 0)
|
---|
65 | //// {
|
---|
66 | //// EvaluationStat stat = newStats.Pop();
|
---|
67 | //// stats.Add(stat);
|
---|
68 | //// }
|
---|
69 | ////}
|
---|
70 |
|
---|
71 | void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
|
---|
72 | {
|
---|
73 | if (stats.Count > 0)
|
---|
74 | {
|
---|
75 | TimeSpan timeNeeded = stats[stats.Count - 1].Time - stats[0].Time;
|
---|
76 | vm.EvaluationsPerSec = Math.Round(vm.Evaluations / timeNeeded.TotalSeconds, 2);
|
---|
77 | }
|
---|
78 | var ds = new EnumerableDataSource<EvaluationStat>(stats);
|
---|
79 | ds.SetXMapping(x => x.Iteration);
|
---|
80 | ds.SetYMapping(y => y.CurrentBestQuality);
|
---|
81 |
|
---|
82 | LineGraph graph = new LineGraph(ds);
|
---|
83 |
|
---|
84 | graph.StrokeThickness = 2;
|
---|
85 | graph.AddToPlotter(ChartPlotter);
|
---|
86 |
|
---|
87 | Debug.WriteLine("DONE");
|
---|
88 | ButtonRun.IsEnabled = true;
|
---|
89 | }
|
---|
90 | void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
|
---|
91 | {
|
---|
92 | Debug.WriteLine(e.UserState);
|
---|
93 | }
|
---|
94 |
|
---|
95 | void worker_DoWork(object sender, DoWorkEventArgs e)
|
---|
96 | {
|
---|
97 | Type algorithmType = vm.SelectedAlgorithm;
|
---|
98 |
|
---|
99 | ISymbolicExpressionTreeProblem problem = vm.SelectedProblem;
|
---|
100 |
|
---|
101 | Random random = new Random(DateTime.Now.Millisecond);
|
---|
102 |
|
---|
103 | Type policy = vm.SelectedPolicy;
|
---|
104 | IBanditPolicy policyInstance = null;
|
---|
105 |
|
---|
106 | if (policy == typeof(UCTPolicy))
|
---|
107 | {
|
---|
108 | policyInstance = new UCTPolicy();
|
---|
109 | }
|
---|
110 | else if (policy == typeof (ThresholdAscentPolicy))
|
---|
111 | {
|
---|
112 | policyInstance = new ThresholdAscentPolicy();
|
---|
113 | }
|
---|
114 | else
|
---|
115 | {
|
---|
116 | policyInstance = (IBanditPolicy)Activator.CreateInstance(policy);
|
---|
117 | }
|
---|
118 |
|
---|
119 | vm.MaxLen = 1000;
|
---|
120 | vm.MaxEvaluations = 250000;
|
---|
121 |
|
---|
122 | vm.BestKnownQuality = problem.BestKnownQuality(vm.MaxLen);
|
---|
123 |
|
---|
124 | vm.Evaluations = 0;
|
---|
125 | vm.CurrentBestQuality = 0;
|
---|
126 |
|
---|
127 | stats.Clear();
|
---|
128 |
|
---|
129 | SolverBase solver = null;
|
---|
130 |
|
---|
131 | if (algorithmType == typeof(MonteCarloTreeSearch))
|
---|
132 | {
|
---|
133 | solver = new MonteCarloTreeSearch(problem, vm.MaxLen, random, policyInstance, new RandomSimulation(problem, random, vm.MaxLen));
|
---|
134 | }
|
---|
135 | else if (algorithmType == typeof(SequentialSearch))
|
---|
136 | {
|
---|
137 | solver = new SequentialSearch(problem, vm.MaxLen, random, 0,
|
---|
138 | new HeuristicLab.Algorithms.Bandits.GrammarPolicies.GenericGrammarPolicy(problem, policyInstance));
|
---|
139 | }
|
---|
140 | else if (algorithmType == typeof(RandomSearch))
|
---|
141 | {
|
---|
142 | solver = new RandomSearch(problem, random, vm.MaxLen);
|
---|
143 | }
|
---|
144 | else if (algorithmType == typeof(StandardGP))
|
---|
145 | {
|
---|
146 | solver = new StandardGP(problem, random);
|
---|
147 | }
|
---|
148 | else if (algorithmType == typeof(OffspringSelectionGP))
|
---|
149 | {
|
---|
150 | solver = new OffspringSelectionGP(problem, random);
|
---|
151 | }
|
---|
152 |
|
---|
153 | solver.FoundNewBestSolution += (sentence, quality) => vm.BestSolutionFoundAt = vm.Evaluations;
|
---|
154 | solver.SolutionEvaluated += (sentence, quality) =>
|
---|
155 | {
|
---|
156 | vm.Evaluations++;
|
---|
157 | if (vm.CurrentBestQuality < quality)
|
---|
158 | {
|
---|
159 | vm.CurrentBestQuality = quality;
|
---|
160 | }
|
---|
161 | stats.Add(new EvaluationStat(DateTime.Now, vm.Evaluations, quality, vm.CurrentBestQuality));
|
---|
162 | };
|
---|
163 |
|
---|
164 | solver.Run(vm.MaxEvaluations);
|
---|
165 | }
|
---|
166 |
|
---|
167 | private void ButtonRun_OnClick(object sender, RoutedEventArgs e)
|
---|
168 | {
|
---|
169 | ChartPlotter.Children.RemoveAll<LineGraph>();
|
---|
170 | ButtonRun.IsEnabled = false;
|
---|
171 | worker.RunWorkerAsync();
|
---|
172 | }
|
---|
173 |
|
---|
174 | private void ButtonPause_OnClick(object sender, RoutedEventArgs e)
|
---|
175 | {
|
---|
176 | }
|
---|
177 |
|
---|
178 | private void ButtonStop_OnClick(object sender, RoutedEventArgs e)
|
---|
179 | {
|
---|
180 | worker.CancelAsync();
|
---|
181 | }
|
---|
182 |
|
---|
183 | private void ComboBoxAlgorithms_OnSelectionChanged(object sender, SelectionChangedEventArgs e)
|
---|
184 | {
|
---|
185 | if (vm.SelectedAlgorithm == typeof(MonteCarloTreeSearch)
|
---|
186 | || vm.SelectedAlgorithm == typeof(SequentialSearch))
|
---|
187 | {
|
---|
188 | ComboBoxPolicies.IsEnabled = true;
|
---|
189 | }
|
---|
190 | else
|
---|
191 | {
|
---|
192 | ComboBoxPolicies.IsEnabled = false;
|
---|
193 | }
|
---|
194 | }
|
---|
195 | }
|
---|
196 | }
|
---|