Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GrammaticalOptimization/Evaluation/MainWindow.xaml.cs @ 12533

Last change on this file since 12533 was 12503, checked in by aballeit, 10 years ago

#2283 added GUI and charts; fixed MCTS

File size: 6.9 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.ComponentModel;
4using System.Diagnostics;
5using System.Linq;
6using System.Text;
7using System.Threading.Tasks;
8using System.Windows;
9using System.Windows.Controls;
10using System.Windows.Data;
11using System.Windows.Documents;
12using System.Windows.Input;
13using System.Windows.Media;
14using System.Windows.Media.Imaging;
15using System.Windows.Navigation;
16using System.Windows.Shapes;
17using System.Windows.Threading;
18using Evaluation.ViewModel;
19using HeuristicLab.Algorithms.Bandits;
20using HeuristicLab.Algorithms.Bandits.BanditPolicies;
21using HeuristicLab.Algorithms.GeneticProgramming;
22using HeuristicLab.Algorithms.GrammaticalOptimization;
23using HeuristicLab.Algorithms.MonteCarloTreeSearch;
24using HeuristicLab.Algorithms.MonteCarloTreeSearch.Simulation;
25using HeuristicLab.Problems.GrammaticalOptimization;
26using Microsoft.Research.DynamicDataDisplay;
27using Microsoft.Research.DynamicDataDisplay.DataSources;
28
29namespace Evaluation
30{
31    /// <summary>
32    /// Interaction logic for MainWindow.xaml
33    /// </summary>
34    public partial class MainWindow : Window
35    {
36        private BackgroundWorker worker = new BackgroundWorker();
37        private EvaluationViewModel vm;
38        private List<EvaluationStat> stats = new List<EvaluationStat>();
39
40        private Stack<EvaluationStat> newStats = new Stack<EvaluationStat>();
41        private DispatcherTimer updateCollectionTimer;
42
43        public MainWindow()
44        {
45            InitializeComponent();
46            this.DataContext = vm = new EvaluationViewModel();
47            this.worker.WorkerSupportsCancellation = true;
48            this.worker.DoWork += worker_DoWork;
49            this.worker.ProgressChanged += worker_ProgressChanged;
50            this.worker.RunWorkerCompleted += worker_RunWorkerCompleted;
51
52            ////updateCollectionTimer = new DispatcherTimer();
53            ////updateCollectionTimer.Interval = TimeSpan.FromMilliseconds(100);
54            ////updateCollectionTimer.Tick += updateCollectionTimer_Tick;
55            ////updateCollectionTimer.Start();
56
57            vm.HorizontalAxisString = "Evaluations";
58            vm.VerticalAxisString = "BestKnownQuality";
59
60        }
61
62        ////void updateCollectionTimer_Tick(object sender, EventArgs e)
63        ////{
64        ////    while (newStats.Count > 0)
65        ////    {
66        ////        EvaluationStat stat = newStats.Pop();
67        ////        stats.Add(stat);
68        ////    }
69        ////}
70
71        void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
72        {
73            if (stats.Count > 0)
74            {
75                TimeSpan timeNeeded = stats[stats.Count - 1].Time - stats[0].Time;
76                vm.EvaluationsPerSec = Math.Round(vm.Evaluations / timeNeeded.TotalSeconds, 2);
77            }
78            var ds = new EnumerableDataSource<EvaluationStat>(stats);
79            ds.SetXMapping(x => x.Iteration);
80            ds.SetYMapping(y => y.CurrentBestQuality);
81
82            LineGraph graph = new LineGraph(ds);
83
84            graph.StrokeThickness = 2;
85            graph.AddToPlotter(ChartPlotter);
86
87            Debug.WriteLine("DONE");
88            ButtonRun.IsEnabled = true;
89        }
90        void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
91        {
92            Debug.WriteLine(e.UserState);
93        }
94
95        void worker_DoWork(object sender, DoWorkEventArgs e)
96        {
97            Type algorithmType = vm.SelectedAlgorithm;
98
99            ISymbolicExpressionTreeProblem problem = vm.SelectedProblem;
100
101            Random random = new Random(DateTime.Now.Millisecond);
102
103            Type policy = vm.SelectedPolicy;
104            IBanditPolicy policyInstance = null;
105
106            if (policy == typeof(UCTPolicy))
107            {
108                policyInstance = new UCTPolicy();
109            }
110            else if (policy == typeof (ThresholdAscentPolicy))
111            {
112                policyInstance = new ThresholdAscentPolicy();
113            }
114            else
115            {
116                policyInstance = (IBanditPolicy)Activator.CreateInstance(policy);
117            }
118
119            vm.MaxLen = 1000;
120            vm.MaxEvaluations = 250000;
121
122            vm.BestKnownQuality = problem.BestKnownQuality(vm.MaxLen);
123
124            vm.Evaluations = 0;
125            vm.CurrentBestQuality = 0;
126
127            stats.Clear();
128
129            SolverBase solver = null;
130
131            if (algorithmType == typeof(MonteCarloTreeSearch))
132            {
133                solver = new MonteCarloTreeSearch(problem, vm.MaxLen, random, policyInstance, new RandomSimulation(problem, random, vm.MaxLen));
134            }
135            else if (algorithmType == typeof(SequentialSearch))
136            {
137                solver = new SequentialSearch(problem, vm.MaxLen, random, 0,
138                    new HeuristicLab.Algorithms.Bandits.GrammarPolicies.GenericGrammarPolicy(problem, policyInstance));
139            }
140            else if (algorithmType == typeof(RandomSearch))
141            {
142                solver = new RandomSearch(problem, random, vm.MaxLen);
143            }
144            else if (algorithmType == typeof(StandardGP))
145            {
146                solver = new StandardGP(problem, random);
147            }
148            else if (algorithmType == typeof(OffspringSelectionGP))
149            {
150                solver = new OffspringSelectionGP(problem, random);
151            }
152
153            solver.FoundNewBestSolution += (sentence, quality) => vm.BestSolutionFoundAt = vm.Evaluations;
154            solver.SolutionEvaluated += (sentence, quality) =>
155            {
156                vm.Evaluations++;
157                if (vm.CurrentBestQuality < quality)
158                {
159                    vm.CurrentBestQuality = quality;
160                }
161                stats.Add(new EvaluationStat(DateTime.Now, vm.Evaluations, quality, vm.CurrentBestQuality));
162            };
163
164            solver.Run(vm.MaxEvaluations);
165        }
166
167        private void ButtonRun_OnClick(object sender, RoutedEventArgs e)
168        {
169            ChartPlotter.Children.RemoveAll<LineGraph>();
170            ButtonRun.IsEnabled = false;
171            worker.RunWorkerAsync();
172        }
173
174        private void ButtonPause_OnClick(object sender, RoutedEventArgs e)
175        {
176        }
177
178        private void ButtonStop_OnClick(object sender, RoutedEventArgs e)
179        {
180            worker.CancelAsync();
181        }
182
183        private void ComboBoxAlgorithms_OnSelectionChanged(object sender, SelectionChangedEventArgs e)
184        {
185            if (vm.SelectedAlgorithm == typeof(MonteCarloTreeSearch)
186                || vm.SelectedAlgorithm == typeof(SequentialSearch))
187            {
188                ComboBoxPolicies.IsEnabled = true;
189            }
190            else
191            {
192                ComboBoxPolicies.IsEnabled = false;
193            }
194        }
195    }
196}
Note: See TracBrowser for help on using the repository browser.