1 | using System;
|
---|
2 | using System.Linq;
|
---|
3 | using System.Collections.Generic;
|
---|
4 | using System.Globalization;
|
---|
5 | using HeuristicLab.Algorithms.Bandits;
|
---|
6 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
7 | using HeuristicLab.Algorithms.Bandits.Models;
|
---|
8 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
9 |
|
---|
10 | namespace HeuristicLab.Problems.GrammaticalOptimization.Test {
|
---|
11 | [TestClass]
|
---|
12 | public class TestBanditPolicies {
|
---|
13 | [TestMethod]
|
---|
14 | public void ComparePoliciesForGaussianUnknownVarianceBandit() {
|
---|
15 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
16 | var randSeed = 31415;
|
---|
17 | var nArms = 20;
|
---|
18 |
|
---|
19 | // some of the policies are specific to rewards in [0..1], e.g. Treshold Ascent or UCB1
|
---|
20 | TestPolicyGaussianUnknownVariance(randSeed, nArms, new ExtremeHunterPolicy());
|
---|
21 | TestPolicyGaussianUnknownVariance(randSeed, nArms, new IntervalEstimationPolicy());
|
---|
22 | //TestPolicyGaussianUnknownVariance(randSeed, nArms, new UCBPolicy(10));
|
---|
23 | TestPolicyGaussianUnknownVariance(randSeed, nArms, new UCBNormalPolicy());
|
---|
24 | TestPolicyGaussianUnknownVariance(randSeed, nArms, new UCB1TunedPolicy());
|
---|
25 | TestPolicyGaussianUnknownVariance(randSeed, nArms, new UCB1Policy(10));
|
---|
26 | TestPolicyGaussianUnknownVariance(randSeed, nArms, new ActiveLearningPolicy(10));
|
---|
27 | TestPolicyGaussianUnknownVariance(randSeed, nArms, new ChernoffIntervalEstimationPolicy());
|
---|
28 | TestPolicyGaussianUnknownVariance(randSeed, nArms, new BoltzmannExplorationPolicy(100));
|
---|
29 | TestPolicyGaussianUnknownVariance(randSeed, nArms, new EpsGreedyPolicy(0.1));
|
---|
30 | TestPolicyGaussianUnknownVariance(randSeed, nArms, new RandomPolicy());
|
---|
31 | }
|
---|
32 |
|
---|
33 | [TestMethod]
|
---|
34 | // test case I as described in Extreme Bandits paper
|
---|
35 | public void ComparePoliciesExtremeBandits1() {
|
---|
36 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
37 | var randSeed = 31415;
|
---|
38 | TestPolicyExtremeBandit1(randSeed, new RandomPolicy());
|
---|
39 | TestPolicyExtremeBandit1(randSeed, new SingleArmPolicy(1));
|
---|
40 | TestPolicyExtremeBandit1(randSeed, new ExtremeHunterPolicy());
|
---|
41 | TestPolicyExtremeBandit1(randSeed, new UCB1Policy(10000));
|
---|
42 | TestPolicyExtremeBandit1(randSeed, new UCB1Policy(1000));
|
---|
43 | TestPolicyExtremeBandit1(randSeed, new UCB1Policy(100));
|
---|
44 | TestPolicyExtremeBandit1(randSeed, new UCB1Policy(10));
|
---|
45 | TestPolicyExtremeBandit1(randSeed, new UCB1Policy(2));
|
---|
46 | TestPolicyExtremeBandit1(randSeed, new UCB1Policy(1));
|
---|
47 | TestPolicyExtremeBandit1(randSeed, new UCB1Policy(0.5));
|
---|
48 | TestPolicyExtremeBandit1(randSeed, new UCB1Policy(0.1));
|
---|
49 | TestPolicyExtremeBandit1(randSeed, new EpsGreedyPolicy(0.1));
|
---|
50 | TestPolicyExtremeBandit1(randSeed, new EpsGreedyPolicy(0.05));
|
---|
51 | TestPolicyExtremeBandit1(randSeed, new EpsGreedyPolicy(0.01));
|
---|
52 | }
|
---|
53 |
|
---|
54 | [TestMethod]
|
---|
55 | // test case II as described in Extreme Bandits paper
|
---|
56 | public void ComparePoliciesExtremeBandits2() {
|
---|
57 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
58 | var randSeed = 31415;
|
---|
59 | //TestPolicyExtremeBandit2(randSeed, new RandomPolicy());
|
---|
60 | //TestPolicyExtremeBandit2(randSeed, new SingleArmPolicy(0));
|
---|
61 | //TestPolicyExtremeBandit2(randSeed, new SingleArmPolicy(1));
|
---|
62 | //TestPolicyExtremeBandit2(randSeed, new SingleArmPolicy(2));
|
---|
63 | // TestPolicyExtremeBandit2(randSeed, new ExtremeHunterPolicy());
|
---|
64 | TestPolicyExtremeBandit2(randSeed, new ExtremeHunterPolicy(D: 1, minPulls: 30));
|
---|
65 | TestPolicyExtremeBandit2(randSeed, new ExtremeHunterPolicy(D: 2, minPulls: 30));
|
---|
66 | TestPolicyExtremeBandit2(randSeed, new ExtremeHunterPolicy(D: 0.5, minPulls: 30));
|
---|
67 | TestPolicyExtremeBandit2(randSeed, new ExtremeHunterPolicy(D: 5, minPulls: 30));
|
---|
68 | TestPolicyExtremeBandit2(randSeed, new ExtremeHunterPolicy(D: 1, minPulls: 100));
|
---|
69 | TestPolicyExtremeBandit2(randSeed, new ExtremeHunterPolicy(D: 2, minPulls: 100));
|
---|
70 | TestPolicyExtremeBandit2(randSeed, new ExtremeHunterPolicy(D: 0.5, minPulls: 100));
|
---|
71 | TestPolicyExtremeBandit2(randSeed, new ExtremeHunterPolicy(D: 5, minPulls: 100));
|
---|
72 | // TestPolicyExtremeBandit2(randSeed, new UCB1Policy(10000));
|
---|
73 | //TestPolicyExtremeBandit2(randSeed, new UCB1Policy(1000));
|
---|
74 | //TestPolicyExtremeBandit2(randSeed, new UCB1Policy(100));
|
---|
75 | //TestPolicyExtremeBandit2(randSeed, new UCB1Policy(10));
|
---|
76 | //TestPolicyExtremeBandit2(randSeed, new UCB1Policy(2));
|
---|
77 | //TestPolicyExtremeBandit2(randSeed, new UCB1Policy(1));
|
---|
78 | //TestPolicyExtremeBandit2(randSeed, new UCB1Policy(0.5));
|
---|
79 | //TestPolicyExtremeBandit2(randSeed, new UCB1Policy(0.1));
|
---|
80 | //TestPolicyExtremeBandit2(randSeed, new EpsGreedyPolicy(0.1));
|
---|
81 | //TestPolicyExtremeBandit2(randSeed, new EpsGreedyPolicy(0.05));
|
---|
82 | //TestPolicyExtremeBandit2(randSeed, new EpsGreedyPolicy(0.01));
|
---|
83 | //TestPolicyExtremeBandit2(randSeed, new ThresholdAscentPolicy());
|
---|
84 | }
|
---|
85 |
|
---|
86 | [TestMethod]
|
---|
87 | // my own test case for ExtremeHunter
|
---|
88 | // using truncated normal distributions
|
---|
89 | public void ComparePoliciesExtremeBandits3() {
|
---|
90 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
91 | var randSeed = 31415;
|
---|
92 | TestPolicyExtremeBandit3(randSeed, new RandomPolicy());
|
---|
93 | TestPolicyExtremeBandit3(randSeed, new SingleArmPolicy(0));
|
---|
94 | TestPolicyExtremeBandit3(randSeed, new SingleArmPolicy(1));
|
---|
95 | TestPolicyExtremeBandit3(randSeed, new SingleArmPolicy(2));
|
---|
96 | TestPolicyExtremeBandit3(randSeed, new ExtremeHunterPolicy());
|
---|
97 | TestPolicyExtremeBandit3(randSeed, new UCB1Policy(3));
|
---|
98 | TestPolicyExtremeBandit3(randSeed, new EpsGreedyPolicy(0.1));
|
---|
99 | }
|
---|
100 |
|
---|
101 | [TestMethod]
|
---|
102 | // a unit test to experiment with bandit policies for completing a GP sentence
|
---|
103 | public void ComparePoliciesSentenceCompletionProblem() {
|
---|
104 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
105 | var randSeed = 31415;
|
---|
106 |
|
---|
107 |
|
---|
108 | Func<Random, IBandit> sentenceCompletionBanditFactory = (banditRandom) => {
|
---|
109 | var problem = new SymbolicRegressionPoly10Problem();
|
---|
110 | return new SentenceBandit(banditRandom, problem, "a*b+c*d+e*f+E", 23);
|
---|
111 | };
|
---|
112 |
|
---|
113 | // ignore number of arms
|
---|
114 |
|
---|
115 | // var b = sentenceCompletionBanditFactory(new Random());
|
---|
116 | // all reference policies (always pulling one arm)
|
---|
117 | // for (int i = 0; i < b.NumArms; i++) {
|
---|
118 | // TestPolicy(randSeed, new SingleArmPolicy(i), sentenceCompletionBanditFactory);
|
---|
119 | // }
|
---|
120 |
|
---|
121 | // for the completition of a*b+c*d+e*f+a*g*i+E the arms 12, 15, and 19 are optimal
|
---|
122 | TestPolicy(randSeed, new SingleArmPolicy(12), sentenceCompletionBanditFactory);
|
---|
123 |
|
---|
124 | TestPolicy(randSeed, new RandomPolicy(), sentenceCompletionBanditFactory);
|
---|
125 |
|
---|
126 | TestPolicy(randSeed, new ExtremeHunterPolicy(), sentenceCompletionBanditFactory);
|
---|
127 | TestPolicy(randSeed, new ExtremeHunterPolicy(D: 0.5), sentenceCompletionBanditFactory);
|
---|
128 | TestPolicy(randSeed, new UCB1Policy(3), sentenceCompletionBanditFactory);
|
---|
129 | TestPolicy(randSeed, new UCB1Policy(1), sentenceCompletionBanditFactory);
|
---|
130 | TestPolicy(randSeed, new UCB1Policy(0.5), sentenceCompletionBanditFactory);
|
---|
131 | TestPolicy(randSeed, new ThresholdAscentPolicy(), sentenceCompletionBanditFactory);
|
---|
132 | TestPolicy(randSeed, new EpsGreedyPolicy(0.1), sentenceCompletionBanditFactory);
|
---|
133 | }
|
---|
134 |
|
---|
135 | [TestMethod]
|
---|
136 | public void ComparePoliciesForBernoulliBandit() {
|
---|
137 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
138 | var randSeed = 31415;
|
---|
139 | var nArms = 20;
|
---|
140 | //Console.WriteLine("Exp3 (gamma=0.01)");
|
---|
141 | //TestPolicyBernoulli(globalRand, nArms, new Exp3Policy(new Random(seedForPolicy), nArms, 1));
|
---|
142 | //Console.WriteLine("Exp3 (gamma=0.05)");
|
---|
143 | //estPolicyBernoulli(globalRand, nArms, new Exp3Policy(new Random(seedForPolicy), nArms, 1));
|
---|
144 | Console.WriteLine("Thompson (Bernoulli)"); TestPolicyBernoulli(randSeed, nArms, new BernoulliThompsonSamplingPolicy());
|
---|
145 | Console.WriteLine("Generic Thompson (Bernoulli)"); TestPolicyBernoulli(randSeed, nArms, new GenericThompsonSamplingPolicy(new BernoulliModel()));
|
---|
146 | Console.WriteLine("Random");
|
---|
147 | TestPolicyBernoulli(randSeed, nArms, new RandomPolicy());
|
---|
148 | Console.WriteLine("UCB1");
|
---|
149 | TestPolicyBernoulli(randSeed, nArms, new UCB1Policy());
|
---|
150 | Console.WriteLine("UCB1Tuned");
|
---|
151 | TestPolicyBernoulli(randSeed, nArms, new UCB1TunedPolicy());
|
---|
152 | Console.WriteLine("UCB1Normal");
|
---|
153 | TestPolicyBernoulli(randSeed, nArms, new UCBNormalPolicy());
|
---|
154 | Console.WriteLine("Eps(0.01)");
|
---|
155 | TestPolicyBernoulli(randSeed, nArms, new EpsGreedyPolicy(0.01));
|
---|
156 | Console.WriteLine("Eps(0.05)");
|
---|
157 | TestPolicyBernoulli(randSeed, nArms, new EpsGreedyPolicy(0.05));
|
---|
158 | //Console.WriteLine("Eps(0.1)");
|
---|
159 | //TestPolicyBernoulli(randSeed, nArms, new EpsGreedyPolicy(0.1));
|
---|
160 | //Console.WriteLine("Eps(0.2)");
|
---|
161 | //TestPolicyBernoulli(randSeed, nArms, new EpsGreedyPolicy(0.2));
|
---|
162 | //Console.WriteLine("Eps(0.5)");
|
---|
163 | //TestPolicyBernoulli(randSeed, nArms, new EpsGreedyPolicy(0.5));
|
---|
164 | Console.WriteLine("UCT(0.1)"); TestPolicyBernoulli(randSeed, nArms, new UCTPolicy(0.1));
|
---|
165 | Console.WriteLine("UCT(0.5)"); TestPolicyBernoulli(randSeed, nArms, new UCTPolicy(0.5));
|
---|
166 | Console.WriteLine("UCT(1) "); TestPolicyBernoulli(randSeed, nArms, new UCTPolicy(1));
|
---|
167 | Console.WriteLine("UCT(2) "); TestPolicyBernoulli(randSeed, nArms, new UCTPolicy(2));
|
---|
168 | Console.WriteLine("UCT(5) "); TestPolicyBernoulli(randSeed, nArms, new UCTPolicy(5));
|
---|
169 | Console.WriteLine("BoltzmannExploration(0.1)"); TestPolicyBernoulli(randSeed, nArms, new BoltzmannExplorationPolicy(0.1));
|
---|
170 | Console.WriteLine("BoltzmannExploration(0.5)"); TestPolicyBernoulli(randSeed, nArms, new BoltzmannExplorationPolicy(0.5));
|
---|
171 | Console.WriteLine("BoltzmannExploration(1) "); TestPolicyBernoulli(randSeed, nArms, new BoltzmannExplorationPolicy(1));
|
---|
172 | Console.WriteLine("BoltzmannExploration(10) "); TestPolicyBernoulli(randSeed, nArms, new BoltzmannExplorationPolicy(10));
|
---|
173 | Console.WriteLine("BoltzmannExploration(100)"); TestPolicyBernoulli(randSeed, nArms, new BoltzmannExplorationPolicy(100));
|
---|
174 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.01)"); TestPolicyBernoulli(randSeed, nArms, new ChernoffIntervalEstimationPolicy(0.01));
|
---|
175 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.05)"); TestPolicyBernoulli(randSeed, nArms, new ChernoffIntervalEstimationPolicy(0.05));
|
---|
176 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.1) "); TestPolicyBernoulli(randSeed, nArms, new ChernoffIntervalEstimationPolicy(0.1));
|
---|
177 |
|
---|
178 | // not applicable to bernoulli rewards
|
---|
179 | //Console.WriteLine("ThresholdAscent(10, 0.01) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 10, 0.01));
|
---|
180 | //Console.WriteLine("ThresholdAscent(10, 0.05) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 10, 0.05));
|
---|
181 | //Console.WriteLine("ThresholdAscent(10, 0.1) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 10, 0.1));
|
---|
182 | //Console.WriteLine("ThresholdAscent(100, 0.01) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 100, 0.01));
|
---|
183 | //Console.WriteLine("ThresholdAscent(100, 0.05) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 100, 0.05));
|
---|
184 | //Console.WriteLine("ThresholdAscent(100, 0.1) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 100, 0.1));
|
---|
185 | //Console.WriteLine("ThresholdAscent(1000, 0.01)"); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.01));
|
---|
186 | //Console.WriteLine("ThresholdAscent(1000, 0.05)"); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.05));
|
---|
187 | //Console.WriteLine("ThresholdAscent(1000, 0.1) "); TestPolicyBernoulli(globalRand, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.1));
|
---|
188 | }
|
---|
189 |
|
---|
190 | [TestMethod]
|
---|
191 | public void ComparePoliciesForGaussianBandit() {
|
---|
192 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
193 |
|
---|
194 | var randSeed = 31415;
|
---|
195 | var nArms = 20;
|
---|
196 | Console.WriteLine("Threshold Ascent (20)"); TestPolicyGaussian(randSeed, nArms, new ThresholdAscentPolicy(20, 0.01));
|
---|
197 | Console.WriteLine("Threshold Ascent (100)"); TestPolicyGaussian(randSeed, nArms, new ThresholdAscentPolicy(100, 0.01));
|
---|
198 | Console.WriteLine("Threshold Ascent (500)"); TestPolicyGaussian(randSeed, nArms, new ThresholdAscentPolicy(500, 0.01));
|
---|
199 | Console.WriteLine("Threshold Ascent (1000)"); TestPolicyGaussian(randSeed, nArms, new ThresholdAscentPolicy(1000, 0.01));
|
---|
200 | Console.WriteLine("Generic Thompson (Gaussian fixed var)"); TestPolicyGaussian(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 1)));
|
---|
201 | Console.WriteLine("Generic Thompson (Gaussian unknown var)"); TestPolicyGaussian(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 1, 1, 1)));
|
---|
202 | Console.WriteLine("Thompson (Gaussian orig)"); TestPolicyGaussian(randSeed, nArms, new GaussianThompsonSamplingPolicy(true));
|
---|
203 | Console.WriteLine("Thompson (Gaussian new)"); TestPolicyGaussian(randSeed, nArms, new GaussianThompsonSamplingPolicy());
|
---|
204 |
|
---|
205 | /*
|
---|
206 | Console.WriteLine("Random"); TestPolicyNormal(randSeed, nArms, new RandomPolicy(new Random(seedForPolicy), nArms));
|
---|
207 | Console.WriteLine("UCB1"); TestPolicyNormal(randSeed, nArms, new UCB1Policy(nArms));
|
---|
208 | Console.WriteLine("UCB1Tuned"); TestPolicyNormal(randSeed, nArms, new UCB1TunedPolicy(nArms));
|
---|
209 | Console.WriteLine("UCB1Normal"); TestPolicyNormal(randSeed, nArms, new UCBNormalPolicy(nArms));
|
---|
210 | //Console.WriteLine("Exp3 (gamma=0.01)");
|
---|
211 | //TestPolicyNormal(randSeed, nArms, new Exp3Policy(new Random(seedForPolicy), nArms, 0.01));
|
---|
212 | //Console.WriteLine("Exp3 (gamma=0.05)");
|
---|
213 | //TestPolicyNormal(randSeed, nArms, new Exp3Policy(new Random(seedForPolicy), nArms, 0.05));
|
---|
214 | Console.WriteLine("Eps(0.01)"); TestPolicyNormal(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.01));
|
---|
215 | Console.WriteLine("Eps(0.05)"); TestPolicyNormal(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.05));
|
---|
216 | //Console.WriteLine("Eps(0.1)");
|
---|
217 | //TestPolicyNormal(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.1));
|
---|
218 | //Console.WriteLine("Eps(0.2)");
|
---|
219 | //TestPolicyNormal(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.2));
|
---|
220 | //Console.WriteLine("Eps(0.5)");
|
---|
221 | //TestPolicyNormal(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.5));
|
---|
222 | Console.WriteLine("UCT(0.1)"); TestPolicyNormal(randSeed, nArms, new UCTPolicy(nArms, 0.1));
|
---|
223 | Console.WriteLine("UCT(0.5)"); TestPolicyNormal(randSeed, nArms, new UCTPolicy(nArms, 0.5));
|
---|
224 | Console.WriteLine("UCT(1) "); TestPolicyNormal(randSeed, nArms, new UCTPolicy(nArms, 1));
|
---|
225 | Console.WriteLine("UCT(2) "); TestPolicyNormal(randSeed, nArms, new UCTPolicy(nArms, 2));
|
---|
226 | Console.WriteLine("UCT(5) "); TestPolicyNormal(randSeed, nArms, new UCTPolicy(nArms, 5));
|
---|
227 | Console.WriteLine("BoltzmannExploration(0.1)"); TestPolicyNormal(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 0.1));
|
---|
228 | Console.WriteLine("BoltzmannExploration(0.5)"); TestPolicyNormal(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 0.5));
|
---|
229 | Console.WriteLine("BoltzmannExploration(1) "); TestPolicyNormal(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 1));
|
---|
230 | Console.WriteLine("BoltzmannExploration(10) "); TestPolicyNormal(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 10));
|
---|
231 | Console.WriteLine("BoltzmannExploration(100)"); TestPolicyNormal(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 100));
|
---|
232 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.01)"); TestPolicyNormal(randSeed, nArms, new ChernoffIntervalEstimationPolicy(nArms, 0.01));
|
---|
233 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.05)"); TestPolicyNormal(randSeed, nArms, new ChernoffIntervalEstimationPolicy(nArms, 0.05));
|
---|
234 | Console.WriteLine("ChernoffIntervalEstimationPolicy(0.1) "); TestPolicyNormal(randSeed, nArms, new ChernoffIntervalEstimationPolicy(nArms, 0.1));
|
---|
235 | Console.WriteLine("ThresholdAscent(10,0.01) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 10, 0.01));
|
---|
236 | Console.WriteLine("ThresholdAscent(10,0.05) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 10, 0.05));
|
---|
237 | Console.WriteLine("ThresholdAscent(10,0.1) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 10, 0.1));
|
---|
238 | Console.WriteLine("ThresholdAscent(100,0.01) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 100, 0.01));
|
---|
239 | Console.WriteLine("ThresholdAscent(100,0.05) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 100, 0.05));
|
---|
240 | Console.WriteLine("ThresholdAscent(100,0.1) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 100, 0.1));
|
---|
241 | Console.WriteLine("ThresholdAscent(1000,0.01)"); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.01));
|
---|
242 | Console.WriteLine("ThresholdAscent(1000,0.05)"); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.05));
|
---|
243 | Console.WriteLine("ThresholdAscent(1000,0.1) "); TestPolicyNormal(randSeed, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.1));
|
---|
244 | */
|
---|
245 | }
|
---|
246 |
|
---|
247 | [TestMethod]
|
---|
248 | public void ComparePoliciesForGaussianMixtureBandit() {
|
---|
249 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
250 | var randSeed = 31415;
|
---|
251 | var nArms = 20;
|
---|
252 |
|
---|
253 | Console.WriteLine("Generic Thompson (Gaussian Mixture)"); TestPolicyGaussianMixture(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianMixtureModel()));
|
---|
254 | // Console.WriteLine("Threshold Ascent (20)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(20, 0.01));
|
---|
255 | // Console.WriteLine("Threshold Ascent (100)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(100, 0.01));
|
---|
256 | // Console.WriteLine("Threshold Ascent (500)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(500, 0.01));
|
---|
257 | // Console.WriteLine("Threshold Ascent (1000)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(1000, 0.01));
|
---|
258 | // Console.WriteLine("Thompson (Gaussian orig)"); TestPolicyGaussianMixture(randSeed, nArms, new GaussianThompsonSamplingPolicy(true));
|
---|
259 | // Console.WriteLine("Thompson (Gaussian new)"); TestPolicyGaussianMixture(randSeed, nArms, new GaussianThompsonSamplingPolicy());
|
---|
260 | // Console.WriteLine("Generic Thompson (Gaussian fixed variance)"); TestPolicyGaussianMixture(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 1, 0.1)));
|
---|
261 | // Console.WriteLine("Generic Thompson (Gaussian unknown variance)"); TestPolicyGaussianMixture(randSeed, nArms, new GenericThompsonSamplingPolicy(new GaussianModel(0.5, 1, 1, 1)));
|
---|
262 |
|
---|
263 | /*
|
---|
264 | Console.WriteLine("Random"); TestPolicyGaussianMixture(randSeed, nArms, new RandomPolicy(new Random(seedForPolicy), nArms));
|
---|
265 | Console.WriteLine("UCB1"); TestPolicyGaussianMixture(randSeed, nArms, new UCB1Policy(nArms));
|
---|
266 | Console.WriteLine("UCB1Tuned "); TestPolicyGaussianMixture(randSeed, nArms, new UCB1TunedPolicy(nArms));
|
---|
267 | Console.WriteLine("UCB1Normal"); TestPolicyGaussianMixture(randSeed, nArms, new UCBNormalPolicy(nArms));
|
---|
268 | Console.WriteLine("Eps(0.01) "); TestPolicyGaussianMixture(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.01));
|
---|
269 | Console.WriteLine("Eps(0.05) "); TestPolicyGaussianMixture(randSeed, nArms, new EpsGreedyPolicy(new Random(seedForPolicy), nArms, 0.05));
|
---|
270 | Console.WriteLine("UCT(1) "); TestPolicyGaussianMixture(randSeed, nArms, new UCTPolicy(nArms, 1));
|
---|
271 | Console.WriteLine("UCT(2) "); TestPolicyGaussianMixture(randSeed, nArms, new UCTPolicy(nArms, 2));
|
---|
272 | Console.WriteLine("UCT(5) "); TestPolicyGaussianMixture(randSeed, nArms, new UCTPolicy(nArms, 5));
|
---|
273 | Console.WriteLine("BoltzmannExploration(1) "); TestPolicyGaussianMixture(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 1));
|
---|
274 | Console.WriteLine("BoltzmannExploration(10) "); TestPolicyGaussianMixture(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 10));
|
---|
275 | Console.WriteLine("BoltzmannExploration(100)"); TestPolicyGaussianMixture(randSeed, nArms, new BoltzmannExplorationPolicy(new Random(seedForPolicy), nArms, 100));
|
---|
276 |
|
---|
277 | Console.WriteLine("ThresholdAscent(10,0.01) "); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(nArms, 10, 0.01));
|
---|
278 | Console.WriteLine("ThresholdAscent(100,0.01) "); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(nArms, 100, 0.01));
|
---|
279 | Console.WriteLine("ThresholdAscent(1000,0.01)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(nArms, 1000, 0.01));
|
---|
280 | Console.WriteLine("ThresholdAscent(10000,0.01)"); TestPolicyGaussianMixture(randSeed, nArms, new ThresholdAscentPolicy(nArms, 10000, 0.01));
|
---|
281 | */
|
---|
282 | }
|
---|
283 |
|
---|
284 |
|
---|
285 | private void TestPolicyBernoulli(int randSeed, int nArms, IBanditPolicy policy) {
|
---|
286 | TestPolicy(randSeed, policy, (banditRandom) => new BernoulliBandit(banditRandom, nArms));
|
---|
287 | }
|
---|
288 | private void TestPolicyGaussian(int randSeed, int nArms, IBanditPolicy policy) {
|
---|
289 | TestPolicy(randSeed, policy, (banditRandom) => new TruncatedNormalBandit(banditRandom, nArms));
|
---|
290 | }
|
---|
291 | private void TestPolicyGaussianMixture(int randSeed, int nArms, IBanditPolicy policy) {
|
---|
292 | TestPolicy(randSeed, policy, (banditRandom) => new GaussianMixtureBandit(banditRandom, nArms));
|
---|
293 | }
|
---|
294 | private void TestPolicyGaussianUnknownVariance(int randSeed, int nArms, IBanditPolicy policy) {
|
---|
295 | TestPolicy(randSeed, policy, (banditRandom) => new GaussianBandit(banditRandom, nArms, 0, 10));
|
---|
296 | }
|
---|
297 |
|
---|
298 | private void TestPolicyExtremeBandit1(int randSeed, IBanditPolicy policy) {
|
---|
299 | TestPolicy(randSeed, policy, (banditRandom) => new ParetoBandit(banditRandom, new double[] { 5, 1.1, 2 }));
|
---|
300 | }
|
---|
301 | private void TestPolicyExtremeBandit2(int randSeed, IBanditPolicy policy) {
|
---|
302 | TestPolicy(randSeed, policy, (banditRandom) => new ParetoBandit(banditRandom, new double[] { 1.5, 1.1, 3 }, new double[] { 0.0, 0.8, 0.0 }, 0, 1));
|
---|
303 | }
|
---|
304 | private void TestPolicyExtremeBandit3(int randSeed, IBanditPolicy policy) {
|
---|
305 | TestPolicy(randSeed, policy, (banditRandom) => new Bandit(banditRandom, new IModel[]
|
---|
306 | {
|
---|
307 | new GammaModel(10, 1), // exp=10, var=10
|
---|
308 | new GammaModel(6, 2), // exp=12, var=24
|
---|
309 | new GammaModel(3, 3), // exp= 9, var=27
|
---|
310 | }, 1, 2));
|
---|
311 | }
|
---|
312 |
|
---|
313 |
|
---|
314 | private void TestPolicy(int randSeed, IBanditPolicy policy, Func<Random, IBandit> banditFactory) {
|
---|
315 | var maxIt = 1E5;
|
---|
316 | var reps = 30; // independent runs
|
---|
317 | //var regretForIteration = new Dictionary<int, List<double>>();
|
---|
318 | //var numberOfPullsOfSuboptimalArmsForExp = new Dictionary<int, double>();
|
---|
319 | //var numberOfPullsOfSuboptimalArmsForMax = new Dictionary<int, double>();
|
---|
320 | //var bestRewardForIteration = new Dictionary<int, List<double>>();
|
---|
321 | var globalRandom = new Random(randSeed);
|
---|
322 | var banditRandom = new Random(globalRandom.Next()); // bandits must produce the same rewards for each test
|
---|
323 | var policyRandom = new Random(globalRandom.Next());
|
---|
324 |
|
---|
325 | // calculate statistics
|
---|
326 | for (int r = 0; r < reps; r++) {
|
---|
327 | var nextLogStep = 1;
|
---|
328 | var b = banditFactory(banditRandom);
|
---|
329 | var totalReward = 0.0;
|
---|
330 | int totalPullsOfOptimalArmExp = 0;
|
---|
331 | int totalPullsOfOptimalArmMax = 0;
|
---|
332 | var maxReward = double.NegativeInfinity;
|
---|
333 | var actionInfos = Enumerable.Range(0, b.NumArms).Select(_ => policy.CreateActionInfo()).ToArray();
|
---|
334 | for (int i = 0; i <= maxIt + 1; i++) {
|
---|
335 | var selectedAction = policy.SelectAction(policyRandom, actionInfos);
|
---|
336 | var reward = b.Pull(selectedAction);
|
---|
337 | actionInfos[selectedAction].UpdateReward(reward);
|
---|
338 |
|
---|
339 | // collect stats
|
---|
340 | if (selectedAction == b.OptimalExpectedRewardArm) totalPullsOfOptimalArmExp++;
|
---|
341 | if (selectedAction == b.OptimalMaximalRewardArm) totalPullsOfOptimalArmMax++;
|
---|
342 | totalReward += reward;
|
---|
343 | maxReward = Math.Max(maxReward, reward);
|
---|
344 |
|
---|
345 | if (i == nextLogStep) {
|
---|
346 | nextLogStep += 500;
|
---|
347 | //if (!regretForIteration.ContainsKey(i)) {
|
---|
348 | // regretForIteration.Add(i, new List<double>());
|
---|
349 | //}
|
---|
350 | //regretForIteration[i].Add(totalRegret / i);
|
---|
351 | //
|
---|
352 | //if (!numberOfPullsOfSuboptimalArmsForExp.ContainsKey(i)) {
|
---|
353 | // numberOfPullsOfSuboptimalArmsForExp.Add(i, 0.0);
|
---|
354 | //}
|
---|
355 | //numberOfPullsOfSuboptimalArmsForExp[i] += totalPullsOfSuboptimalArmsExp;
|
---|
356 | //
|
---|
357 | //if (!numberOfPullsOfSuboptimalArmsForMax.ContainsKey(i)) {
|
---|
358 | // numberOfPullsOfSuboptimalArmsForMax.Add(i, 0.0);
|
---|
359 | //}
|
---|
360 | //numberOfPullsOfSuboptimalArmsForMax[i] += totalPullsOfSuboptimalArmsMax;
|
---|
361 | //
|
---|
362 | //if (!bestRewardForIteration.ContainsKey(i)) {
|
---|
363 | // bestRewardForIteration.Add(i, new List<double>());
|
---|
364 | //}
|
---|
365 | //bestRewardForIteration[i].Add(bestReward);
|
---|
366 | Console.WriteLine("{0};{1,8};{2,7:F5};{3,7:F2};{4,7:F2};{5:F2};{6:F2};{7:F2};{8:F2}",
|
---|
367 | policy, i, totalReward, totalPullsOfOptimalArmExp, totalPullsOfOptimalArmMax, maxReward,
|
---|
368 | totalReward / i, totalPullsOfOptimalArmExp / (double)i, totalPullsOfOptimalArmMax / (double)i);
|
---|
369 | }
|
---|
370 | }
|
---|
371 | }
|
---|
372 | // print
|
---|
373 | //foreach (var p in regretForIteration.Keys.OrderBy(k => k)) {
|
---|
374 | // Console.WriteLine("iter {0,8} regret avg {1,7:F5} min {2,7:F5} max {3,7:F5} suboptimal pulls (exp) {4,7:F2} suboptimal pulls (max) {5,7:F2} max rewards: {6}",
|
---|
375 | // p,
|
---|
376 | // regretForIteration[p].Average(),
|
---|
377 | // regretForIteration[p].Min(),
|
---|
378 | // regretForIteration[p].Max(),
|
---|
379 | // numberOfPullsOfSuboptimalArmsForExp[p] / (double)reps,
|
---|
380 | // numberOfPullsOfSuboptimalArmsForMax[p] / (double)reps,
|
---|
381 | // string.Join(" ", bestRewardForIteration[p])
|
---|
382 | // );
|
---|
383 | //}
|
---|
384 | }
|
---|
385 |
|
---|
386 | }
|
---|
387 | }
|
---|