1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Diagnostics;
|
---|
4 | using System.Globalization;
|
---|
5 | using System.Linq;
|
---|
6 | using HeuristicLab.Algorithms.Bandits;
|
---|
7 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
8 | using HeuristicLab.Algorithms.Bandits.GrammarPolicies;
|
---|
9 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
10 | using HeuristicLab.Problems.GrammaticalOptimization;
|
---|
11 |
|
---|
12 | // NOTES: gkronber
|
---|
13 | // TODO: feature extraction for full symbolic expressions and experiment for all benchmark problems
|
---|
14 | // TODO: why does GaussianThompsonSampling work so well with MCTS for the artificial ant problem?
|
---|
15 | // TODO: research thompson sampling for max bandit?
|
---|
16 | // TODO: verify TA implementation using example from the original paper
|
---|
17 | // TODO: implement thompson sampling for gaussian mixture models
|
---|
18 | // TODO: gleichzeitige modellierung von transformierter zielvariable (y, 1/y, log(y), exp(y), sqrt(y), ...)
|
---|
19 | // TODO: vergleich bei complete-randomly möglichst kurze sÀtze generieren vs. einfach zufÀllig alternativen wÀhlen
|
---|
20 | // TODO: reward discounting (fÌr verÀnderliche reward distributions Ìber zeit). speziellen unit-test dafÌr erstellen
|
---|
21 | // TODO: constant optimization
|
---|
22 | using HeuristicLab.Problems.GrammaticalOptimization.SymbReg;
|
---|
23 | using RandomPolicy = HeuristicLab.Algorithms.Bandits.GrammarPolicies.RandomPolicy;
|
---|
24 |
|
---|
25 |
|
---|
26 | namespace Main {
|
---|
27 | class Program {
|
---|
28 | static void Main(string[] args) {
|
---|
29 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
30 |
|
---|
31 | foreach (var banditPolicy in new IBanditPolicy[]
|
---|
32 | {
|
---|
33 | //new HeuristicLab.Algorithms.Bandits.BanditPolicies.RandomPolicy(),
|
---|
34 | //new UCB1TunedPolicy(),
|
---|
35 | //new UCB1Policy(),
|
---|
36 | //new UCB1Policy(0.8),
|
---|
37 | //new UCB1Policy(1),
|
---|
38 | new UCB1Policy(0.5),
|
---|
39 | //new ExtremeHunterPolicy(),
|
---|
40 | //new ThresholdAscentPolicy(),
|
---|
41 | //new BoltzmannExplorationPolicy(1),
|
---|
42 | //new BoltzmannExplorationPolicy(0.5),
|
---|
43 | //new BoltzmannExplorationPolicy(5),
|
---|
44 | //new EpsGreedyPolicy(0.1),
|
---|
45 | //new EpsGreedyPolicy(0.05),
|
---|
46 | }) {
|
---|
47 | var problem = new SymbolicRegressionPoly10Problem(500);
|
---|
48 | var random = new Random();
|
---|
49 | //var problem = new SymbolicRegressionProblem(random, "Vladislavleva-1", useConstantOpt: true);
|
---|
50 | //var problem = new PrimePolynomialProblem();
|
---|
51 | //var problem = new SantaFeAntProblem();
|
---|
52 | var policy = new GenericGrammarPolicy(problem, banditPolicy);
|
---|
53 | // var policy = new GenericGrammarPolicy(problem, new UCB1Policy(0.5));
|
---|
54 | //var alg = new MonteCarloTreeSearch(problem, 23, random, new UCB1Policy(), new RandomSimulation(problem, random, 30));
|
---|
55 |
|
---|
56 | RunDemo(problem, random, policy, banditPolicy.ToString());
|
---|
57 | }
|
---|
58 | }
|
---|
59 |
|
---|
60 |
|
---|
61 | private static void RunDemo(IProblem problem, Random random, GenericGrammarPolicy policy, string banditPolicyName) {
|
---|
62 |
|
---|
63 |
|
---|
64 | for (int i = 0; i < 100; i++) {
|
---|
65 | int iterations = 0;
|
---|
66 | var globalStatistics = new SentenceSetStatistics();
|
---|
67 |
|
---|
68 | var alg = new SequentialSearch(problem, 23, random, 0, policy);
|
---|
69 |
|
---|
70 |
|
---|
71 | alg.FoundNewBestSolution += (sentence, quality) => {
|
---|
72 | //Console.WriteLine("{0}", globalStatistics);
|
---|
73 | };
|
---|
74 |
|
---|
75 | alg.SolutionEvaluated += (sentence, quality) => {
|
---|
76 | iterations++;
|
---|
77 | globalStatistics.AddSentence(sentence, quality);
|
---|
78 | //UpdateAlleleStatistics(sentence);
|
---|
79 | // comment this if you don't want to see solver statistics
|
---|
80 | if (iterations % 100 == 0) {
|
---|
81 | if (iterations % 1000 == 0) {
|
---|
82 | Console.Clear();
|
---|
83 | }
|
---|
84 | Console.SetCursorPosition(0, 0);
|
---|
85 | Console.WriteLine("{0} {1}", iterations, string.Join(" ", policy.OptimalPulls.Take(15).Select(p => string.Format("{0:F3}", p))));
|
---|
86 | //WriteAlleleStatistics();
|
---|
87 | Console.WriteLine(globalStatistics.BestSentenceQuality);
|
---|
88 | Console.WriteLine(globalStatistics.BestSentence);
|
---|
89 | Console.WriteLine(globalStatistics);
|
---|
90 | alg.PrintStats();
|
---|
91 | //policy.PrintStats();
|
---|
92 | //ResetAlleleStatistics();
|
---|
93 | }
|
---|
94 |
|
---|
95 | // uncomment this if you want to collect statistics of the generated sentences
|
---|
96 | //if (iterations % 1000 == 0) {
|
---|
97 | // Console.WriteLine("{0} {1} {2}", banditPolicyName, string.Join(" ", policy.OptimalPulls.Take(15).Select(p => string.Format("{0:F3}", p))), globalStatistics);
|
---|
98 | //}
|
---|
99 | };
|
---|
100 | int maxIterations = 300000;
|
---|
101 |
|
---|
102 | // ResetAlleleStatistics();
|
---|
103 |
|
---|
104 | //var problem = new SantaFeAntProblem();
|
---|
105 | //var problem = new RoyalPairProblem(10);
|
---|
106 | //var problem = new FindPhrasesProblem(random, 10, 5, 3, 5, 5, 1.0, 0.9, true);
|
---|
107 | //var problem = new PrimePolynomialProblem();
|
---|
108 | //var problem = new SymbolicRegressionProblem(random, "Tower");
|
---|
109 | // @"C:\reps\HeuristicLab\branches\HeuristicLab.Problems.GrammaticalOptimization\HeuristicLab.Problems.GrammaticalOptimization.SymbReg\nht-train.csv",
|
---|
110 | // @"C:\reps\fhooe-new\research\Datasets\Benchmark\kommenda-1.csv",
|
---|
111 | // 1.0,
|
---|
112 | // true);
|
---|
113 | // //var problem = new PrimePolynomialProblem();
|
---|
114 | // var alg = new SequentialSearch(problem, 25, random, 0,
|
---|
115 | //var policy = new HeuristicLab.Algorithms.Bandits.GrammarPolicies.GenericGrammarPolicy(problem, new UCB1TunedPolicy());
|
---|
116 | //var policy = new GenericPolicy(problem);
|
---|
117 | //var policy = new GenericGrammarPolicy(problem, new ExtremeHunterPolicy());
|
---|
118 | //var policy = new GenericGrammarPolicy(problem, new UCB1Policy(0.5));
|
---|
119 | //var policy = new GenericGrammarPolicy(problem, new ActiveLearningPolicy(3));
|
---|
120 | //var policy = new GenericGrammarPolicy(problem, new IntervalEstimationPolicy());
|
---|
121 | //var policy = new GenericGrammarPolicy(problem, new ChernoffIntervalEstimationPolicy());
|
---|
122 |
|
---|
123 | //var policy = new GenericGrammarPolicy(problem, new EpsGreedyPolicy(0.1));
|
---|
124 | //var policy = new GenericGrammarPolicy(problem, new ExtremeHunterPolicy(0.001, 0.001, 1, 100000, minPulls: 100));
|
---|
125 | //var policy = new GenericGrammarPolicy(problem, new ThresholdAscentPolicy(s: 1000, delta: 1));
|
---|
126 | //var policy = new GenericGrammarPolicy(problem, new HeuristicLab.Algorithms.Bandits.BanditPolicies.UCB1TunedPolicy());
|
---|
127 | //var policy = new GenericGrammarPolicy(problem, new HeuristicLab.Algorithms.Bandits.BanditPolicies.BoltzmannExplorationPolicy(1));
|
---|
128 | //var policy = new GenericGrammarPolicy(problem, new HeuristicLab.Algorithms.Bandits.BanditPolicies.ThresholdAscentPolicy(500, 0.01)); // santa fe ant
|
---|
129 |
|
---|
130 |
|
---|
131 | //var policy = new GenericGrammarPolicy(problem, new HeuristicLab.Algorithms.Bandits.BanditPolicies.BoltzmannExplorationWithCoolingPolicy(0.01));
|
---|
132 |
|
---|
133 |
|
---|
134 |
|
---|
135 |
|
---|
136 | var sw = new Stopwatch();
|
---|
137 | sw.Start();
|
---|
138 | alg.Run(maxIterations);
|
---|
139 | sw.Stop();
|
---|
140 |
|
---|
141 | //Console.WriteLine(globalStatistics);
|
---|
142 | //
|
---|
143 | //Console.WriteLine("{0:F2} sec {1,10:F1} sols/sec {2,10:F1} ns/sol",
|
---|
144 | // sw.Elapsed.TotalSeconds,
|
---|
145 | // maxIterations / (double)sw.Elapsed.TotalSeconds,
|
---|
146 | // (double)sw.ElapsedMilliseconds * 1000 / maxIterations);
|
---|
147 | }
|
---|
148 | }
|
---|
149 |
|
---|
150 | private static void UpdateAlleleStatistics(string sentence) {
|
---|
151 | for (int i = 0; i < sentence.Length; i++) {
|
---|
152 | var allele = sentence.Substring(i, 1);
|
---|
153 | if (alleleStatistics.ContainsKey(allele)) alleleStatistics[allele]++;
|
---|
154 | }
|
---|
155 | for (int i = 0; i < sentence.Length - 2; i += 2) {
|
---|
156 | var allele = sentence.Substring(i, 3);
|
---|
157 | if (alleleStatistics.ContainsKey(allele)) alleleStatistics[allele]++;
|
---|
158 | }
|
---|
159 | for (int i = 0; i < sentence.Length - 4; i += 2) {
|
---|
160 | var allele = sentence.Substring(i, 5);
|
---|
161 | if (alleleStatistics.ContainsKey(allele)) alleleStatistics[allele]++;
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 |
|
---|
166 | private static Dictionary<string, int> alleleStatistics;
|
---|
167 |
|
---|
168 | private static void ResetAlleleStatistics() {
|
---|
169 | alleleStatistics = new Dictionary<string, int>()
|
---|
170 | {
|
---|
171 | {"a", 0},
|
---|
172 | {"b", 0},
|
---|
173 | {"c", 0},
|
---|
174 | {"d", 0},
|
---|
175 | {"e", 0},
|
---|
176 | {"f", 0},
|
---|
177 | {"g", 0},
|
---|
178 | {"h", 0},
|
---|
179 | {"i", 0},
|
---|
180 | {"j", 0},
|
---|
181 | {"a*b", 0},
|
---|
182 | {"b*a", 0},
|
---|
183 | {"c*d", 0},
|
---|
184 | {"d*c", 0},
|
---|
185 | {"e*f", 0},
|
---|
186 | {"f*e", 0},
|
---|
187 | {"a*g*i", 0},
|
---|
188 | {"a*i*g", 0},
|
---|
189 | {"g*a*i", 0},
|
---|
190 | {"g*i*a", 0},
|
---|
191 | {"i*g*a", 0},
|
---|
192 | {"i*a*g", 0},
|
---|
193 | {"j*c*f", 0},
|
---|
194 | {"j*f*c", 0},
|
---|
195 | {"c*j*f", 0},
|
---|
196 | {"c*f*j", 0},
|
---|
197 | {"f*c*j", 0},
|
---|
198 | {"f*j*c", 0}
|
---|
199 | };
|
---|
200 | }
|
---|
201 |
|
---|
202 |
|
---|
203 | private static void WriteAlleleStatistics() {
|
---|
204 | double count = alleleStatistics.Sum(e => e.Value);
|
---|
205 | foreach (var entry in alleleStatistics.OrderByDescending(e => e.Value)) {
|
---|
206 | Console.WriteLine("{0,-10} {1,-10}", entry.Key, entry.Value);
|
---|
207 | }
|
---|
208 | }
|
---|
209 | }
|
---|
210 | }
|
---|