1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Diagnostics;
|
---|
4 | using System.Globalization;
|
---|
5 | using System.Linq;
|
---|
6 | using System.Text.RegularExpressions;
|
---|
7 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
8 | using HeuristicLab.Algorithms.Bandits.GrammarPolicies;
|
---|
9 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
10 | using HeuristicLab.Algorithms.MonteCarloTreeSearch;
|
---|
11 | using HeuristicLab.Algorithms.MonteCarloTreeSearch.Simulation;
|
---|
12 | using HeuristicLab.Problems.GrammaticalOptimization;
|
---|
13 |
|
---|
14 | // NOTES: gkronber
|
---|
15 | // TODO: feature extraction for full symbolic expressions and experiment for all benchmark problems
|
---|
16 | // TODO: why does GaussianThompsonSampling work so well with MCTS for the artificial ant problem?
|
---|
17 | // TODO: research thompson sampling for max bandit?
|
---|
18 | // TODO: verify TA implementation using example from the original paper
|
---|
19 | // TODO: implement thompson sampling for gaussian mixture models
|
---|
20 | // TODO: gleichzeitige modellierung von transformierter zielvariable (y, 1/y, log(y), exp(y), sqrt(y), ...)
|
---|
21 | // TODO: vergleich bei complete-randomly möglichst kurze sÀtze generieren vs. einfach zufÀllig alternativen wÀhlen
|
---|
22 | // TODO: reward discounting (fÌr verÀnderliche reward distributions Ìber zeit). speziellen unit-test dafÌr erstellen
|
---|
23 | // TODO: constant optimization
|
---|
24 | using HeuristicLab.Problems.GrammaticalOptimization.SymbReg;
|
---|
25 |
|
---|
26 |
|
---|
27 | namespace Main {
|
---|
28 | class Program {
|
---|
29 | static void Main(string[] args) {
|
---|
30 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
31 |
|
---|
32 | RunDemo();
|
---|
33 | }
|
---|
34 |
|
---|
35 |
|
---|
36 | private static void RunDemo() {
|
---|
37 |
|
---|
38 | for (int i = 0; i < 100; i++) {
|
---|
39 | int maxIterations = 2000000;
|
---|
40 | int iterations = 0;
|
---|
41 |
|
---|
42 | var globalStatistics = new SentenceSetStatistics();
|
---|
43 | ResetAlleleStatistics();
|
---|
44 | var random = new Random();
|
---|
45 |
|
---|
46 | var problem = new SymbolicRegressionPoly10Problem();
|
---|
47 | //var problem = new SantaFeAntProblem();
|
---|
48 | //var problem = new RoyalPairProblem(25);
|
---|
49 | //var problem = new FindPhrasesProblem(random, 10, 5, 3, 5, 5, 1.0, 0.9, true);
|
---|
50 | //var problem = new PrimePolynomialProblem();
|
---|
51 | //var problem = new SymbolicRegressionProblem(random,
|
---|
52 | // //@"C:\reps\HeuristicLab\branches\HeuristicLab.Problems.GrammaticalOptimization\HeuristicLab.Problems.GrammaticalOptimization.SymbReg\nht-train.csv",
|
---|
53 | // @"C:\reps\fhooe-new\research\Datasets\Benchmark\kommenda-1.csv",
|
---|
54 | // 1.0,
|
---|
55 | // true);
|
---|
56 | // //var problem = new PrimePolynomialProblem();
|
---|
57 | // var alg = new SequentialSearch(problem, 25, random, 0,
|
---|
58 | // new HeuristicLab.Algorithms.Bandits.GrammarPolicies.GenericGrammarPolicy(problem, new UCB1TunedPolicy()));
|
---|
59 | var policy = new GenericPolicy(problem);
|
---|
60 | var alg = new SequentialSearch(problem, 23, random, 0,
|
---|
61 | policy);
|
---|
62 | //var alg = new MonteCarloTreeSearch(problem, 23, random, new UCB1Policy(), new RandomSimulation(problem, random, 30));
|
---|
63 |
|
---|
64 |
|
---|
65 | alg.FoundNewBestSolution += (sentence, quality) => {
|
---|
66 | //Console.WriteLine("{0}", globalStatistics);
|
---|
67 | };
|
---|
68 |
|
---|
69 | alg.SolutionEvaluated += (sentence, quality) => {
|
---|
70 | iterations++;
|
---|
71 | globalStatistics.AddSentence(sentence, quality);
|
---|
72 | UpdateAlleleStatistics(sentence);
|
---|
73 | // comment this if you don't want to see solver statistics
|
---|
74 | if (iterations % 100 == 0) {
|
---|
75 | if (iterations % 1000 == 0) {
|
---|
76 | Console.Clear();
|
---|
77 | }
|
---|
78 | Console.SetCursorPosition(0, 0);
|
---|
79 | Console.WriteLine(iterations);
|
---|
80 | WriteAlleleStatistics();
|
---|
81 | Console.WriteLine(globalStatistics.BestSentenceQuality);
|
---|
82 | Console.WriteLine(globalStatistics.BestSentence);
|
---|
83 | Console.WriteLine(globalStatistics);
|
---|
84 | //alg.PrintStats();
|
---|
85 | policy.PrintStats();
|
---|
86 | //ResetAlleleStatistics();
|
---|
87 | }
|
---|
88 |
|
---|
89 | // uncomment this if you want to collect statistics of the generated sentences
|
---|
90 | //if (iterations % 100 == 0) {
|
---|
91 | // Console.WriteLine("{0}", globalStatistics);
|
---|
92 | //}
|
---|
93 | };
|
---|
94 |
|
---|
95 | var sw = new Stopwatch();
|
---|
96 | sw.Start();
|
---|
97 | alg.Run(maxIterations);
|
---|
98 | sw.Stop();
|
---|
99 |
|
---|
100 | Console.WriteLine(globalStatistics);
|
---|
101 |
|
---|
102 | Console.WriteLine("{0:F2} sec {1,10:F1} sols/sec {2,10:F1} ns/sol",
|
---|
103 | sw.Elapsed.TotalSeconds,
|
---|
104 | maxIterations / (double)sw.Elapsed.TotalSeconds,
|
---|
105 | (double)sw.ElapsedMilliseconds * 1000 / maxIterations);
|
---|
106 | }
|
---|
107 | }
|
---|
108 |
|
---|
109 | private static void UpdateAlleleStatistics(string sentence) {
|
---|
110 | for (int i = 0; i < sentence.Length; i++) {
|
---|
111 | var allele = sentence.Substring(i, 1);
|
---|
112 | if (alleleStatistics.ContainsKey(allele)) alleleStatistics[allele]++;
|
---|
113 | }
|
---|
114 | for (int i = 0; i < sentence.Length - 2; i+=2) {
|
---|
115 | var allele = sentence.Substring(i, 3);
|
---|
116 | if (alleleStatistics.ContainsKey(allele)) alleleStatistics[allele]++;
|
---|
117 | }
|
---|
118 | for (int i = 0; i < sentence.Length - 4; i+=2) {
|
---|
119 | var allele = sentence.Substring(i, 5);
|
---|
120 | if (alleleStatistics.ContainsKey(allele)) alleleStatistics[allele]++;
|
---|
121 | }
|
---|
122 | }
|
---|
123 |
|
---|
124 |
|
---|
125 | private static Dictionary<string, int> alleleStatistics;
|
---|
126 |
|
---|
127 | private static void ResetAlleleStatistics() {
|
---|
128 | alleleStatistics = new Dictionary<string, int>()
|
---|
129 | {
|
---|
130 | {"a", 0},
|
---|
131 | {"b", 0},
|
---|
132 | {"c", 0},
|
---|
133 | {"d", 0},
|
---|
134 | {"e", 0},
|
---|
135 | {"f", 0},
|
---|
136 | {"g", 0},
|
---|
137 | {"h", 0},
|
---|
138 | {"i", 0},
|
---|
139 | {"j", 0},
|
---|
140 | {"a*b", 0},
|
---|
141 | {"b*a", 0},
|
---|
142 | {"c*d", 0},
|
---|
143 | {"d*c", 0},
|
---|
144 | {"e*f", 0},
|
---|
145 | {"f*e", 0},
|
---|
146 | {"a*g*i", 0},
|
---|
147 | {"a*i*g", 0},
|
---|
148 | {"g*a*i", 0},
|
---|
149 | {"g*i*a", 0},
|
---|
150 | {"i*g*a", 0},
|
---|
151 | {"i*a*g", 0},
|
---|
152 | {"j*c*f", 0},
|
---|
153 | {"j*f*c", 0},
|
---|
154 | {"c*j*f", 0},
|
---|
155 | {"c*f*j", 0},
|
---|
156 | {"f*c*j", 0},
|
---|
157 | {"f*j*c", 0}
|
---|
158 | };
|
---|
159 | }
|
---|
160 |
|
---|
161 |
|
---|
162 | private static void WriteAlleleStatistics() {
|
---|
163 | double count = alleleStatistics.Sum(e => e.Value);
|
---|
164 | foreach (var entry in alleleStatistics.OrderByDescending(e=>e.Value)) {
|
---|
165 | Console.WriteLine("{0,-10} {1,-10}", entry.Key, entry.Value);
|
---|
166 | }
|
---|
167 | }
|
---|
168 | }
|
---|
169 | }
|
---|