[11795] | 1 | using System;
|
---|
[12298] | 2 | using System.Collections.Generic;
|
---|
[11659] | 3 | using System.Diagnostics;
|
---|
[11730] | 4 | using System.Globalization;
|
---|
[12298] | 5 | using System.Linq;
|
---|
[12893] | 6 | using HeuristicLab.Algorithms.Bandits;
|
---|
[11742] | 7 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
[12290] | 8 | using HeuristicLab.Algorithms.Bandits.GrammarPolicies;
|
---|
[11659] | 9 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
| 10 | using HeuristicLab.Problems.GrammaticalOptimization;
|
---|
| 11 |
|
---|
[11981] | 12 | // NOTES: gkronber
|
---|
| 13 | // TODO: feature extraction for full symbolic expressions and experiment for all benchmark problems
|
---|
| 14 | // TODO: why does GaussianThompsonSampling work so well with MCTS for the artificial ant problem?
|
---|
| 15 | // TODO: research thompson sampling for max bandit?
|
---|
| 16 | // TODO: verify TA implementation using example from the original paper
|
---|
| 17 | // TODO: implement thompson sampling for gaussian mixture models
|
---|
| 18 | // TODO: gleichzeitige modellierung von transformierter zielvariable (y, 1/y, log(y), exp(y), sqrt(y), ...)
|
---|
| 19 | // TODO: vergleich bei complete-randomly möglichst kurze sÀtze generieren vs. einfach zufÀllig alternativen wÀhlen
|
---|
| 20 | // TODO: reward discounting (fÌr verÀnderliche reward distributions Ìber zeit). speziellen unit-test dafÌr erstellen
|
---|
| 21 | // TODO: constant optimization
|
---|
[12290] | 22 | using HeuristicLab.Problems.GrammaticalOptimization.SymbReg;
|
---|
[12893] | 23 | using RandomPolicy = HeuristicLab.Algorithms.Bandits.GrammarPolicies.RandomPolicy;
|
---|
[11981] | 24 |
|
---|
| 25 |
|
---|
[12290] | 26 | namespace Main {
|
---|
| 27 | class Program {
|
---|
| 28 | static void Main(string[] args) {
|
---|
| 29 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
[11730] | 30 |
|
---|
[12893] | 31 | foreach (var banditPolicy in new IBanditPolicy[]
|
---|
| 32 | {
|
---|
| 33 | //new HeuristicLab.Algorithms.Bandits.BanditPolicies.RandomPolicy(),
|
---|
| 34 | //new UCB1TunedPolicy(),
|
---|
| 35 | //new UCB1Policy(),
|
---|
| 36 | //new UCB1Policy(0.8),
|
---|
| 37 | //new UCB1Policy(1),
|
---|
| 38 | new UCB1Policy(0.5),
|
---|
| 39 | //new ExtremeHunterPolicy(),
|
---|
| 40 | //new ThresholdAscentPolicy(),
|
---|
| 41 | //new BoltzmannExplorationPolicy(1),
|
---|
| 42 | //new BoltzmannExplorationPolicy(0.5),
|
---|
| 43 | //new BoltzmannExplorationPolicy(5),
|
---|
| 44 | //new EpsGreedyPolicy(0.1),
|
---|
| 45 | //new EpsGreedyPolicy(0.05),
|
---|
| 46 | }) {
|
---|
| 47 | var problem = new SymbolicRegressionPoly10Problem(500);
|
---|
| 48 | var random = new Random();
|
---|
| 49 | //var problem = new SymbolicRegressionProblem(random, "Vladislavleva-1", useConstantOpt: true);
|
---|
| 50 | //var problem = new PrimePolynomialProblem();
|
---|
| 51 | //var problem = new SantaFeAntProblem();
|
---|
| 52 | var policy = new GenericGrammarPolicy(problem, banditPolicy);
|
---|
| 53 | // var policy = new GenericGrammarPolicy(problem, new UCB1Policy(0.5));
|
---|
| 54 | //var alg = new MonteCarloTreeSearch(problem, 23, random, new UCB1Policy(), new RandomSimulation(problem, random, 30));
|
---|
| 55 |
|
---|
| 56 | RunDemo(problem, random, policy, banditPolicy.ToString());
|
---|
| 57 | }
|
---|
[12290] | 58 | }
|
---|
[11727] | 59 |
|
---|
[11730] | 60 |
|
---|
[12893] | 61 | private static void RunDemo(IProblem problem, Random random, GenericGrammarPolicy policy, string banditPolicyName) {
|
---|
[11727] | 62 |
|
---|
[12893] | 63 |
|
---|
[12290] | 64 | for (int i = 0; i < 100; i++) {
|
---|
| 65 | int iterations = 0;
|
---|
| 66 | var globalStatistics = new SentenceSetStatistics();
|
---|
[11770] | 67 |
|
---|
[12893] | 68 | var alg = new SequentialSearch(problem, 23, random, 0, policy);
|
---|
[11659] | 69 |
|
---|
| 70 |
|
---|
[12290] | 71 | alg.FoundNewBestSolution += (sentence, quality) => {
|
---|
| 72 | //Console.WriteLine("{0}", globalStatistics);
|
---|
| 73 | };
|
---|
[11981] | 74 |
|
---|
[12290] | 75 | alg.SolutionEvaluated += (sentence, quality) => {
|
---|
| 76 | iterations++;
|
---|
| 77 | globalStatistics.AddSentence(sentence, quality);
|
---|
[12893] | 78 | //UpdateAlleleStatistics(sentence);
|
---|
[12290] | 79 | // comment this if you don't want to see solver statistics
|
---|
| 80 | if (iterations % 100 == 0) {
|
---|
[12298] | 81 | if (iterations % 1000 == 0) {
|
---|
| 82 | Console.Clear();
|
---|
| 83 | }
|
---|
[12290] | 84 | Console.SetCursorPosition(0, 0);
|
---|
[12893] | 85 | Console.WriteLine("{0} {1}", iterations, string.Join(" ", policy.OptimalPulls.Take(15).Select(p => string.Format("{0:F3}", p))));
|
---|
[12876] | 86 | //WriteAlleleStatistics();
|
---|
[12298] | 87 | Console.WriteLine(globalStatistics.BestSentenceQuality);
|
---|
| 88 | Console.WriteLine(globalStatistics.BestSentence);
|
---|
| 89 | Console.WriteLine(globalStatistics);
|
---|
[12876] | 90 | alg.PrintStats();
|
---|
| 91 | //policy.PrintStats();
|
---|
[12298] | 92 | //ResetAlleleStatistics();
|
---|
[12290] | 93 | }
|
---|
[12893] | 94 |
|
---|
[12290] | 95 | // uncomment this if you want to collect statistics of the generated sentences
|
---|
[12893] | 96 | //if (iterations % 1000 == 0) {
|
---|
| 97 | // Console.WriteLine("{0} {1} {2}", banditPolicyName, string.Join(" ", policy.OptimalPulls.Take(15).Select(p => string.Format("{0:F3}", p))), globalStatistics);
|
---|
[12290] | 98 | //}
|
---|
| 99 | };
|
---|
[12893] | 100 | int maxIterations = 300000;
|
---|
[11981] | 101 |
|
---|
[12893] | 102 | // ResetAlleleStatistics();
|
---|
| 103 |
|
---|
| 104 | //var problem = new SantaFeAntProblem();
|
---|
| 105 | //var problem = new RoyalPairProblem(10);
|
---|
| 106 | //var problem = new FindPhrasesProblem(random, 10, 5, 3, 5, 5, 1.0, 0.9, true);
|
---|
| 107 | //var problem = new PrimePolynomialProblem();
|
---|
| 108 | //var problem = new SymbolicRegressionProblem(random, "Tower");
|
---|
| 109 | // @"C:\reps\HeuristicLab\branches\HeuristicLab.Problems.GrammaticalOptimization\HeuristicLab.Problems.GrammaticalOptimization.SymbReg\nht-train.csv",
|
---|
| 110 | // @"C:\reps\fhooe-new\research\Datasets\Benchmark\kommenda-1.csv",
|
---|
| 111 | // 1.0,
|
---|
| 112 | // true);
|
---|
| 113 | // //var problem = new PrimePolynomialProblem();
|
---|
| 114 | // var alg = new SequentialSearch(problem, 25, random, 0,
|
---|
| 115 | //var policy = new HeuristicLab.Algorithms.Bandits.GrammarPolicies.GenericGrammarPolicy(problem, new UCB1TunedPolicy());
|
---|
| 116 | //var policy = new GenericPolicy(problem);
|
---|
| 117 | //var policy = new GenericGrammarPolicy(problem, new ExtremeHunterPolicy());
|
---|
| 118 | //var policy = new GenericGrammarPolicy(problem, new UCB1Policy(0.5));
|
---|
| 119 | //var policy = new GenericGrammarPolicy(problem, new ActiveLearningPolicy(3));
|
---|
| 120 | //var policy = new GenericGrammarPolicy(problem, new IntervalEstimationPolicy());
|
---|
| 121 | //var policy = new GenericGrammarPolicy(problem, new ChernoffIntervalEstimationPolicy());
|
---|
| 122 |
|
---|
| 123 | //var policy = new GenericGrammarPolicy(problem, new EpsGreedyPolicy(0.1));
|
---|
| 124 | //var policy = new GenericGrammarPolicy(problem, new ExtremeHunterPolicy(0.001, 0.001, 1, 100000, minPulls: 100));
|
---|
| 125 | //var policy = new GenericGrammarPolicy(problem, new ThresholdAscentPolicy(s: 1000, delta: 1));
|
---|
| 126 | //var policy = new GenericGrammarPolicy(problem, new HeuristicLab.Algorithms.Bandits.BanditPolicies.UCB1TunedPolicy());
|
---|
| 127 | //var policy = new GenericGrammarPolicy(problem, new HeuristicLab.Algorithms.Bandits.BanditPolicies.BoltzmannExplorationPolicy(1));
|
---|
| 128 | //var policy = new GenericGrammarPolicy(problem, new HeuristicLab.Algorithms.Bandits.BanditPolicies.ThresholdAscentPolicy(500, 0.01)); // santa fe ant
|
---|
| 129 |
|
---|
| 130 |
|
---|
| 131 | //var policy = new GenericGrammarPolicy(problem, new HeuristicLab.Algorithms.Bandits.BanditPolicies.BoltzmannExplorationWithCoolingPolicy(0.01));
|
---|
| 132 |
|
---|
| 133 |
|
---|
| 134 |
|
---|
| 135 |
|
---|
[12290] | 136 | var sw = new Stopwatch();
|
---|
| 137 | sw.Start();
|
---|
| 138 | alg.Run(maxIterations);
|
---|
| 139 | sw.Stop();
|
---|
[11659] | 140 |
|
---|
[12893] | 141 | //Console.WriteLine(globalStatistics);
|
---|
| 142 | //
|
---|
| 143 | //Console.WriteLine("{0:F2} sec {1,10:F1} sols/sec {2,10:F1} ns/sol",
|
---|
| 144 | // sw.Elapsed.TotalSeconds,
|
---|
| 145 | // maxIterations / (double)sw.Elapsed.TotalSeconds,
|
---|
| 146 | // (double)sw.ElapsedMilliseconds * 1000 / maxIterations);
|
---|
[12290] | 147 | }
|
---|
[11659] | 148 | }
|
---|
[12298] | 149 |
|
---|
| 150 | private static void UpdateAlleleStatistics(string sentence) {
|
---|
| 151 | for (int i = 0; i < sentence.Length; i++) {
|
---|
| 152 | var allele = sentence.Substring(i, 1);
|
---|
| 153 | if (alleleStatistics.ContainsKey(allele)) alleleStatistics[allele]++;
|
---|
| 154 | }
|
---|
[12893] | 155 | for (int i = 0; i < sentence.Length - 2; i += 2) {
|
---|
[12298] | 156 | var allele = sentence.Substring(i, 3);
|
---|
| 157 | if (alleleStatistics.ContainsKey(allele)) alleleStatistics[allele]++;
|
---|
| 158 | }
|
---|
[12893] | 159 | for (int i = 0; i < sentence.Length - 4; i += 2) {
|
---|
[12298] | 160 | var allele = sentence.Substring(i, 5);
|
---|
| 161 | if (alleleStatistics.ContainsKey(allele)) alleleStatistics[allele]++;
|
---|
| 162 | }
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 |
|
---|
| 166 | private static Dictionary<string, int> alleleStatistics;
|
---|
| 167 |
|
---|
| 168 | private static void ResetAlleleStatistics() {
|
---|
| 169 | alleleStatistics = new Dictionary<string, int>()
|
---|
| 170 | {
|
---|
| 171 | {"a", 0},
|
---|
| 172 | {"b", 0},
|
---|
| 173 | {"c", 0},
|
---|
| 174 | {"d", 0},
|
---|
| 175 | {"e", 0},
|
---|
| 176 | {"f", 0},
|
---|
| 177 | {"g", 0},
|
---|
| 178 | {"h", 0},
|
---|
| 179 | {"i", 0},
|
---|
| 180 | {"j", 0},
|
---|
| 181 | {"a*b", 0},
|
---|
| 182 | {"b*a", 0},
|
---|
| 183 | {"c*d", 0},
|
---|
| 184 | {"d*c", 0},
|
---|
| 185 | {"e*f", 0},
|
---|
| 186 | {"f*e", 0},
|
---|
| 187 | {"a*g*i", 0},
|
---|
| 188 | {"a*i*g", 0},
|
---|
| 189 | {"g*a*i", 0},
|
---|
| 190 | {"g*i*a", 0},
|
---|
| 191 | {"i*g*a", 0},
|
---|
| 192 | {"i*a*g", 0},
|
---|
| 193 | {"j*c*f", 0},
|
---|
| 194 | {"j*f*c", 0},
|
---|
| 195 | {"c*j*f", 0},
|
---|
| 196 | {"c*f*j", 0},
|
---|
| 197 | {"f*c*j", 0},
|
---|
| 198 | {"f*j*c", 0}
|
---|
| 199 | };
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 |
|
---|
| 203 | private static void WriteAlleleStatistics() {
|
---|
| 204 | double count = alleleStatistics.Sum(e => e.Value);
|
---|
[12893] | 205 | foreach (var entry in alleleStatistics.OrderByDescending(e => e.Value)) {
|
---|
[12298] | 206 | Console.WriteLine("{0,-10} {1,-10}", entry.Key, entry.Value);
|
---|
| 207 | }
|
---|
| 208 | }
|
---|
[12290] | 209 | }
|
---|
[11659] | 210 | }
|
---|