[11795] | 1 | using System;
|
---|
[11659] | 2 | using System.Diagnostics;
|
---|
[11730] | 3 | using System.Globalization;
|
---|
[11742] | 4 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
[12290] | 5 | using HeuristicLab.Algorithms.Bandits.GrammarPolicies;
|
---|
[11659] | 6 | using HeuristicLab.Algorithms.GrammaticalOptimization;
|
---|
[12098] | 7 | using HeuristicLab.Algorithms.MonteCarloTreeSearch;
|
---|
| 8 | using HeuristicLab.Algorithms.MonteCarloTreeSearch.Simulation;
|
---|
[11659] | 9 | using HeuristicLab.Problems.GrammaticalOptimization;
|
---|
| 10 |
|
---|
[11981] | 11 | // NOTES: gkronber
|
---|
| 12 | // TODO: feature extraction for full symbolic expressions and experiment for all benchmark problems
|
---|
| 13 | // TODO: why does GaussianThompsonSampling work so well with MCTS for the artificial ant problem?
|
---|
| 14 | // TODO: research thompson sampling for max bandit?
|
---|
| 15 | // TODO: verify TA implementation using example from the original paper
|
---|
| 16 | // TODO: implement thompson sampling for gaussian mixture models
|
---|
| 17 | // TODO: gleichzeitige modellierung von transformierter zielvariable (y, 1/y, log(y), exp(y), sqrt(y), ...)
|
---|
| 18 | // TODO: vergleich bei complete-randomly möglichst kurze sÀtze generieren vs. einfach zufÀllig alternativen wÀhlen
|
---|
| 19 | // TODO: reward discounting (fÌr verÀnderliche reward distributions Ìber zeit). speziellen unit-test dafÌr erstellen
|
---|
| 20 | // TODO: constant optimization
|
---|
[12290] | 21 | using HeuristicLab.Problems.GrammaticalOptimization.SymbReg;
|
---|
[11981] | 22 |
|
---|
| 23 |
|
---|
[12290] | 24 | namespace Main {
|
---|
| 25 | class Program {
|
---|
| 26 | static void Main(string[] args) {
|
---|
| 27 | CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
|
---|
[11730] | 28 |
|
---|
[12290] | 29 | RunDemo();
|
---|
| 30 | }
|
---|
[11727] | 31 |
|
---|
[11730] | 32 |
|
---|
[12290] | 33 | private static void RunDemo() {
|
---|
[11727] | 34 |
|
---|
[12290] | 35 | for (int i = 0; i < 100; i++) {
|
---|
| 36 | int maxIterations = 2000000;
|
---|
| 37 | int iterations = 0;
|
---|
[11730] | 38 |
|
---|
[12290] | 39 | var globalStatistics = new SentenceSetStatistics();
|
---|
| 40 | var random = new Random();
|
---|
[11770] | 41 |
|
---|
[12290] | 42 | var problem = new SymbolicRegressionPoly10Problem();
|
---|
| 43 | //var problem = new SantaFeAntProblem();
|
---|
| 44 | //var problem = new RoyalPairProblem(25);
|
---|
| 45 | //var problem = new FindPhrasesProblem(random, 10, 5, 3, 5, 5, 1.0, 0.9, true);
|
---|
| 46 | //var problem = new PrimePolynomialProblem();
|
---|
| 47 | //var problem = new SymbolicRegressionProblem(random,
|
---|
| 48 | // //@"C:\reps\HeuristicLab\branches\HeuristicLab.Problems.GrammaticalOptimization\HeuristicLab.Problems.GrammaticalOptimization.SymbReg\nht-train.csv",
|
---|
| 49 | // @"C:\reps\fhooe-new\research\Datasets\Benchmark\kommenda-1.csv",
|
---|
| 50 | // 1.0,
|
---|
| 51 | // true);
|
---|
| 52 | // //var problem = new PrimePolynomialProblem();
|
---|
| 53 | // var alg = new SequentialSearch(problem, 25, random, 0,
|
---|
| 54 | // new HeuristicLab.Algorithms.Bandits.GrammarPolicies.GenericGrammarPolicy(problem, new UCB1TunedPolicy()));
|
---|
[12294] | 55 | var policy = new GenericPolicy(problem);
|
---|
[12295] | 56 | var alg = new SequentialSearch(problem, 23, random, 0,
|
---|
[12294] | 57 | policy);
|
---|
[12290] | 58 | //var alg = new MonteCarloTreeSearch(problem, 23, random, new UCB1Policy(), new RandomSimulation(problem, random, 30));
|
---|
[11659] | 59 |
|
---|
| 60 |
|
---|
[12290] | 61 | alg.FoundNewBestSolution += (sentence, quality) => {
|
---|
| 62 | //Console.WriteLine("{0}", globalStatistics);
|
---|
| 63 | };
|
---|
[11981] | 64 |
|
---|
[12290] | 65 | alg.SolutionEvaluated += (sentence, quality) => {
|
---|
| 66 | iterations++;
|
---|
| 67 | globalStatistics.AddSentence(sentence, quality);
|
---|
[11981] | 68 |
|
---|
[12290] | 69 | // comment this if you don't want to see solver statistics
|
---|
| 70 | if (iterations % 100 == 0) {
|
---|
| 71 | if (iterations % 1000 == 0) Console.Clear();
|
---|
| 72 | Console.SetCursorPosition(0, 0);
|
---|
[12295] | 73 | alg.PrintStats();
|
---|
| 74 | //policy.PrintStats();
|
---|
[12290] | 75 | }
|
---|
[11832] | 76 |
|
---|
[12290] | 77 | // uncomment this if you want to collect statistics of the generated sentences
|
---|
| 78 | //if (iterations % 100 == 0) {
|
---|
| 79 | // Console.WriteLine("{0}", globalStatistics);
|
---|
| 80 | //}
|
---|
| 81 | };
|
---|
[11981] | 82 |
|
---|
[12290] | 83 | var sw = new Stopwatch();
|
---|
| 84 | sw.Start();
|
---|
| 85 | alg.Run(maxIterations);
|
---|
| 86 | sw.Stop();
|
---|
[11659] | 87 |
|
---|
[12290] | 88 | Console.WriteLine(globalStatistics);
|
---|
[11659] | 89 |
|
---|
[12290] | 90 | Console.WriteLine("{0:F2} sec {1,10:F1} sols/sec {2,10:F1} ns/sol",
|
---|
| 91 | sw.Elapsed.TotalSeconds,
|
---|
| 92 | maxIterations / (double)sw.Elapsed.TotalSeconds,
|
---|
| 93 | (double)sw.ElapsedMilliseconds * 1000 / maxIterations);
|
---|
| 94 | }
|
---|
[11659] | 95 | }
|
---|
[12290] | 96 | }
|
---|
[11659] | 97 | }
|
---|