Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GrammaticalOptimization-gkr/HeuristicLab.Problems.GrammaticalOptimization/Problems/RoyalTreeProblem.cs @ 13042

Last change on this file since 13042 was 12893, checked in by gkronber, 9 years ago

#2283: experiments on grammatical optimization algorithms (maxreward instead of avg reward, ...)

File size: 10.7 KB
RevLine 
[11659]1using System;
2using System.Collections.Generic;
[11865]3using System.Diagnostics;
[11659]4using System.Linq;
5using System.Text;
[11865]6using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
[11659]7
8namespace HeuristicLab.Problems.GrammaticalOptimization {
[11865]9  public class RoyalTreeProblem : ISymbolicExpressionTreeProblem {
[11659]10    // Punch: "How Effective Are Multiple Populations in Genetic Programming", 1998
[11865]11    // In fact, for a new GP system it is dicult to judge whether it is performing
12    // as intended or not, since the programs it generates are not necessarily identical to
13    // those generated by other GP systems. This raised two questions: what constitutes
14    // a "standard" problem in GP, and how do we rate the performance of a system on
15    // such a problem.
16    // One of the goals of this research was to create a benchmark problem to test how
17    // well a particular GP configuration would perform as compared to other configurations.
18    // ...
19    // We were interested in addressing the same issues, showing how GP could address
20    // difficult problems as well as providing a tunable benchmark for comparing GP con-
21    // figurations. Furthermore, we were interested in creating and using this benchmark
22    // to test the effectiveness of coarse-grain parallel GP's as compared to single population
23    // GP's.
24    // ...
25    // A suitable benchmark problem which has only a single, unique tree as an answer can remove this obstruction.
[11659]26
27    private readonly IGrammar grammar;
[11865]28    private readonly char targetRootSymbol;
[12099]29    public string Name { get { return "RoyalTree"; } }
[11865]30    // the number of levels determines the number of non-terminal symbols
31    // non-terminal A has only one argument, non-terminal B has two arguments ...
32    // optimal level-e tree has quality 122880,
33    // level-a (a) tree has
34    // level-f (6) tree "is extremely difficult"
35    // level-g (7) tree "never succeeded"
36    public RoyalTreeProblem(int levels) {
37      if (levels < 1 || levels > 7) throw new ArgumentException();
38      var sentenceSymbol = 'S';
39      var terminalSymbols = new char[] { 'x', 'y', 'z' };
40      // originally non-terminal-symbols (but for the sequential search grammar these are only alternatives
41      var nonTerminalSymbols = Enumerable.Range(0, levels).Select(lvl => (char)(lvl + (byte)'A')).ToArray(); // [A, B ... ]
42      var arities = Enumerable.Range(1, levels).ToArray(); // [1, 2, ... levels]
43      this.targetRootSymbol = char.ToLower(nonTerminalSymbols.Last());
44      {
45        // grammar for sequential search
46        // S -> x | y | z | aS | bSS | cSSS ...
47
48        var rules = new List<Tuple<char, string>>();
49        foreach (var symb in terminalSymbols) {
50          rules.Add(Tuple.Create('S', symb.ToString()));
51        }
52        for (int ntIdx = 0; ntIdx < nonTerminalSymbols.Length; ntIdx++) {
53          var opSymb = char.ToLower(nonTerminalSymbols[ntIdx]);
54          var remChain = string.Join("", Enumerable.Repeat('S', arities[ntIdx]));
55          rules.Add(Tuple.Create('S', opSymb + remChain));
56        }
57
58        this.grammar = new Grammar(sentenceSymbol, terminalSymbols.Concat(nonTerminalSymbols.Select(char.ToLower)), new char[] { 'S' }, rules);
59      }
60
61      {
62        // grammar for tree-based GP
63        // S -> x | y | z | A | B | C ...
64        // A -> S
65        // B -> SS
66        // C -> SSS
67        var rules = new List<Tuple<char, string>>();
68        foreach (var symb in terminalSymbols.Concat(nonTerminalSymbols)) {
69          rules.Add(Tuple.Create('S', symb.ToString()));
70        }
71
72        for (int ntIdx = 0; ntIdx < nonTerminalSymbols.Length; ntIdx++) {
73          var ntSymb = nonTerminalSymbols[ntIdx];
74          var alt = string.Join("", Enumerable.Repeat('S', arities[ntIdx]));
75          rules.Add(Tuple.Create(ntSymb, alt));
76        }
77        this.TreeBasedGPGrammar = new Grammar(sentenceSymbol, terminalSymbols, nonTerminalSymbols.Concat(new char[] { 'S' }), rules);
78      }
79
80      maxSizeForLevel = new int[8];
81      optimalSentencesForLevel = new string[8];
82      optimalQualityForLevel = new double[8];
83      maxSizeForLevel[0] = 1; // lvl-0 (x | y)
84      maxSizeForLevel[1] = 2; // lvl-1 (e.g. ax)
85      optimalSentencesForLevel[0] = "x";
86      optimalQualityForLevel[0] = 1;
87      //optimalSentencesForLevel[1] = "ax";
88      //optimalQualityForLevel[1] = 4;
89
[11972]90      for (int i = 1; i < levels; i++) {
[11865]91        maxSizeForLevel[i] = i * maxSizeForLevel[i - 1] + 1; // e.g. lvl-2: baxax
92
93        var opSymb = char.ToLower(nonTerminalSymbols[i - 1]);
94        optimalSentencesForLevel[i] = opSymb +
95                                       string.Join("",
96                                         Enumerable.Repeat(optimalSentencesForLevel[i - 1], arities[i - 1]));
97
98        optimalQualityForLevel[i] = Evaluate(optimalSentencesForLevel[i]);
99      }
100
101      // from the paper
102      Debug.Assert(maxSizeForLevel[5] == 326);
103      Debug.Assert(maxSizeForLevel[6] == 1957);
[11659]104    }
105
[11865]106    private readonly string[] optimalSentencesForLevel;
107    private readonly double[] optimalQualityForLevel;
108    private readonly int[] maxSizeForLevel;
109
[11732]110    public double BestKnownQuality(int maxLen) {
[11865]111      // search for corresponding level
112      int level = 0;
[11972]113      while (level+1 < maxSizeForLevel.Length && maxSizeForLevel[level + 1] < maxLen) level++;
[11865]114      // ASSERT: maxSizeForLevel[level + 1] >= maxLen
115      return optimalQualityForLevel[level];
[11659]116    }
117
118    public IGrammar Grammar {
119      get { return grammar; }
120    }
121
122    public double Evaluate(string sentence) {
[11865]123      int pos = 0;
124      bool perfect;
125      return Evaluate(sentence, ref pos, out perfect);
[11659]126    }
[11865]127
128    private double Evaluate(string sentence, ref int pos, out bool perfect) {
129      const double completeBonus = 2.0;
130      double t = 0.0;
131      double weight = 0.0;
132      double sum = 0.0;
133      bool correctRoot = false;
134      bool allPerfect = true, tPerfect;
135      int arity;
136      switch (sentence[pos]) {
137        case 'a':
138          pos++;
139          correctRoot = (sentence[pos] == 'x');
140          t = Evaluate(sentence, ref pos, out tPerfect); // ignores the perfect flag (false for terminals)
141          weight = GetWeight(correctRoot, true);
142          sum = weight * t;
143          perfect = correctRoot;
144          if (correctRoot) sum *= completeBonus;
145          return sum;
146        case 'b': {
147            arity = 2;
148            pos++;
149            for (int i = 0; i < arity; i++) {
150              correctRoot = (sentence[pos] == 'a');
151              t = Evaluate(sentence, ref pos, out tPerfect);
152              weight = GetWeight(correctRoot, tPerfect);
153              allPerfect &= correctRoot & tPerfect;
154              sum += weight * t;
155            }
156            perfect = allPerfect;
157            if (allPerfect) sum *= completeBonus;
158            return sum;
159          }
160        case 'c': {
161            arity = 3;
162            sum = 0.0;
163            pos++;
164            for (int i = 0; i < arity; i++) {
165              correctRoot = (sentence[pos] == 'b');
166              t = Evaluate(sentence, ref pos, out tPerfect);
167              weight = GetWeight(correctRoot, tPerfect);
168              allPerfect &= correctRoot & tPerfect;
169              sum += weight * t;
170            }
171            perfect = allPerfect;
172            if (allPerfect) sum *= completeBonus;
173            return sum;
174          }
175        case 'd': {
176            arity = 4;
177            sum = 0.0;
178            pos++;
179            for (int i = 0; i < arity; i++) {
180              correctRoot = (sentence[pos] == 'c');
181              t = Evaluate(sentence, ref pos, out tPerfect);
182              weight = GetWeight(correctRoot, tPerfect);
183              allPerfect &= correctRoot & tPerfect;
184              sum += weight * t;
185            }
186            perfect = allPerfect;
187            if (allPerfect) sum *= completeBonus;
188            return sum;
189          }
190        case 'e': {
191            arity = 5;
192            sum = 0.0;
193            pos++;
194            for (int i = 0; i < arity; i++) {
195              correctRoot = (sentence[pos] == 'd');
196              t = Evaluate(sentence, ref pos, out tPerfect);
197              weight = GetWeight(correctRoot, tPerfect);
198              allPerfect &= correctRoot & tPerfect;
199              sum += weight * t;
200            }
201            perfect = allPerfect;
202            if (allPerfect) sum *= completeBonus;
203            return sum;
204          }
205        case 'f': {
206            arity = 6;
207            sum = 0.0;
208            pos++;
209            for (int i = 0; i < arity; i++) {
210              correctRoot = (sentence[pos] == 'e');
211              t = Evaluate(sentence, ref pos, out tPerfect);
212              weight = GetWeight(correctRoot, tPerfect);
213              allPerfect &= correctRoot & tPerfect;
214              sum += weight * t;
215            }
216            perfect = allPerfect;
217            if (allPerfect) sum *= completeBonus;
218            return sum;
219          }
220        case 'g': {
221            arity = 7;
222            sum = 0.0;
223            pos++;
224            for (int i = 0; i < arity; i++) {
225              correctRoot = (sentence[pos] == 'f');
226              t = Evaluate(sentence, ref pos, out tPerfect);
227              weight = GetWeight(correctRoot, tPerfect);
228              allPerfect &= correctRoot & tPerfect;
229              sum += weight * t;
230            }
231            perfect = allPerfect;
232            if (allPerfect) sum *= completeBonus;
233            return sum;
234          }
235        case 'x':
236          pos++;
237          perfect = false;
238          return 1.0;
239        case 'y':
240        case 'z':
241          pos++;
242          perfect = false;
243          return 0.0;
244        default: throw new ArgumentException();
245      }
246    }
247
248    private double GetWeight(bool correctRoot, bool perfect) {
249      const double fullBonus = 2.0;
250      const double partialBonus = 1.0;
251      const double penalty = 0.33;
252      if (correctRoot && perfect) return fullBonus;
253      else if (correctRoot) return partialBonus;
254      else return penalty;
255    }
256
[11832]257    public string CanonicalRepresentation(string phrase) {
[11793]258      throw new NotImplementedException();
[11832]259      return phrase;
[11727]260    }
[11659]261
[11865]262    public IEnumerable<Feature> GetFeatures(string phrase) {
[11832]263      throw new NotImplementedException();
264    }
[12893]265    public bool IsOptimalPhrase(string phrase) {
266      throw new NotImplementedException();
267    }
[11865]268
269    public IGrammar TreeBasedGPGrammar { get; private set; }
270    public string ConvertTreeToSentence(ISymbolicExpressionTree tree) {
271      var sb = new StringBuilder();
272      foreach (var s in tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix()) {
273        if (s.Symbol.Name == "S") continue;
274        sb.Append(s.Symbol.Name.ToLower());
275      }
276      return sb.ToString();
277    }
[11659]278  }
279}
Note: See TracBrowser for help on using the repository browser.