1 | using System;
|
---|
2 | using System.CodeDom.Compiler;
|
---|
3 | using System.Collections.Generic;
|
---|
4 | using System.Diagnostics;
|
---|
5 | using System.Globalization;
|
---|
6 | using System.IO;
|
---|
7 | using System.Linq;
|
---|
8 | using System.Security;
|
---|
9 | using System.Security.AccessControl;
|
---|
10 | using System.Security.Authentication.ExtendedProtection.Configuration;
|
---|
11 | using System.Text;
|
---|
12 | using AutoDiff;
|
---|
13 | using HeuristicLab.Algorithms.Bandits;
|
---|
14 | using HeuristicLab.Common;
|
---|
15 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
16 | using HeuristicLab.Problems.DataAnalysis;
|
---|
17 | using HeuristicLab.Problems.Instances;
|
---|
18 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
19 |
|
---|
20 | namespace HeuristicLab.Problems.GrammaticalOptimization.SymbReg {
|
---|
21 | // provides bridge to HL regression problem instances
|
---|
22 | public class SymbolicRegressionProblem : ISymbolicExpressionTreeProblem {
|
---|
23 |
|
---|
24 | // C represents Koza-style ERC (the symbol is the index of the ERC), the values are initialized below
|
---|
25 | private const string grammarString = @"
|
---|
26 | G(E):
|
---|
27 | E -> V | C | V+E | V-E | V*E | V%E | (E) | C+E | C-E | C*E | C%E
|
---|
28 | C -> 0..9
|
---|
29 | V -> <variables>
|
---|
30 | ";
|
---|
31 |
|
---|
32 | // when using constant opt optimal constants are generated in the evaluation step so we don't need them in the grammar
|
---|
33 | private const string grammarConstOptString = @"
|
---|
34 | G(E):
|
---|
35 | E -> V | V+E | V*E | V%E | (E)
|
---|
36 | V -> <variables>
|
---|
37 | ";
|
---|
38 |
|
---|
39 | // S .. Sum (+), N .. Neg. sum (-), P .. Product (*), D .. Division (%)
|
---|
40 | private const string treeGrammarString = @"
|
---|
41 | G(E):
|
---|
42 | E -> V | C | S | N | P | D
|
---|
43 | S -> EE | EEE
|
---|
44 | N -> EE | EEE
|
---|
45 | P -> EE | EEE
|
---|
46 | D -> EE
|
---|
47 | C -> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
---|
48 | V -> <variables>
|
---|
49 | ";
|
---|
50 | private const string treeGrammarConstOptString = @"
|
---|
51 | G(E):
|
---|
52 | E -> V | S | P | D
|
---|
53 | S -> EE | EEE
|
---|
54 | P -> EE | EEE
|
---|
55 | D -> EE
|
---|
56 | V -> <variables>
|
---|
57 | ";
|
---|
58 |
|
---|
59 | // when we use constants optimization we can completely ignore all constants by a simple strategy:
|
---|
60 | // introduce a constant factor for each complete term
|
---|
61 | // introduce a constant offset for each complete expression (including expressions in brackets)
|
---|
62 | // e.g. 1*(2*a + b - 3 + 4) is the same as c0*a + c1*b + c2
|
---|
63 |
|
---|
64 | private readonly IGrammar grammar;
|
---|
65 |
|
---|
66 | private readonly int N;
|
---|
67 | private readonly double[,] x;
|
---|
68 | private readonly double[] y;
|
---|
69 | private readonly int d;
|
---|
70 | private readonly double[] erc;
|
---|
71 | private readonly bool useConstantOpt;
|
---|
72 | public string Name { get; private set; }
|
---|
73 | private Random random;
|
---|
74 |
|
---|
75 |
|
---|
76 | // lambda should be tuned using CV
|
---|
77 | public SymbolicRegressionProblem(Random random, string partOfName, bool useConstantOpt = true) {
|
---|
78 | var instanceProviders = new RegressionInstanceProvider[]
|
---|
79 | {new RegressionRealWorldInstanceProvider(),
|
---|
80 | new HeuristicLab.Problems.Instances.DataAnalysis.VariousInstanceProvider(),
|
---|
81 | new KeijzerInstanceProvider(),
|
---|
82 | new VladislavlevaInstanceProvider(),
|
---|
83 | new NguyenInstanceProvider(),
|
---|
84 | new KornsInstanceProvider(),
|
---|
85 | };
|
---|
86 | var instanceProvider = instanceProviders.FirstOrDefault(prov => prov.GetDataDescriptors().Any(dd => dd.Name.Contains(partOfName)));
|
---|
87 | IRegressionProblemData problemData = null;
|
---|
88 | if (instanceProvider != null) {
|
---|
89 | var dds = instanceProvider.GetDataDescriptors();
|
---|
90 | problemData = instanceProvider.LoadData(dds.Single(ds => ds.Name.Contains(partOfName)));
|
---|
91 |
|
---|
92 | } else if (File.Exists(partOfName)) {
|
---|
93 | // check if it is a file
|
---|
94 | var prov = new RegressionCSVInstanceProvider();
|
---|
95 | problemData = prov.ImportData(partOfName);
|
---|
96 | problemData.TrainingPartition.Start = 0;
|
---|
97 | problemData.TrainingPartition.End = problemData.Dataset.Rows;
|
---|
98 | // no test partition
|
---|
99 | problemData.TestPartition.Start = problemData.Dataset.Rows;
|
---|
100 | problemData.TestPartition.End = problemData.Dataset.Rows;
|
---|
101 | } else {
|
---|
102 | throw new ArgumentException("instance not found");
|
---|
103 | }
|
---|
104 |
|
---|
105 | this.useConstantOpt = useConstantOpt;
|
---|
106 |
|
---|
107 | this.Name = problemData.Name;
|
---|
108 |
|
---|
109 | this.N = problemData.TrainingIndices.Count();
|
---|
110 | this.d = problemData.AllowedInputVariables.Count();
|
---|
111 | if (d > 26) throw new NotSupportedException(); // we only allow single-character terminal symbols so far
|
---|
112 | this.x = new double[N, d];
|
---|
113 | this.y = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray();
|
---|
114 |
|
---|
115 | var varEst = new OnlineMeanAndVarianceCalculator();
|
---|
116 |
|
---|
117 | var means = new double[d];
|
---|
118 | var stdDevs = new double[d];
|
---|
119 |
|
---|
120 | int i = 0;
|
---|
121 | foreach (var inputVariable in problemData.AllowedInputVariables) {
|
---|
122 | varEst.Reset();
|
---|
123 | problemData.Dataset.GetDoubleValues(inputVariable).ToList().ForEach(varEst.Add);
|
---|
124 | if (varEst.VarianceErrorState != OnlineCalculatorError.None) throw new ArgumentException();
|
---|
125 | means[i] = varEst.Mean;
|
---|
126 | stdDevs[i] = Math.Sqrt(varEst.Variance);
|
---|
127 | i++;
|
---|
128 | }
|
---|
129 |
|
---|
130 | i = 0;
|
---|
131 | foreach (var r in problemData.TrainingIndices) {
|
---|
132 | int j = 0;
|
---|
133 | foreach (var inputVariable in problemData.AllowedInputVariables) {
|
---|
134 | x[i, j] = (problemData.Dataset.GetDoubleValue(inputVariable, r) - means[j]) / stdDevs[j];
|
---|
135 | j++;
|
---|
136 | }
|
---|
137 | i++;
|
---|
138 | }
|
---|
139 |
|
---|
140 | this.random = random;
|
---|
141 |
|
---|
142 | // initialize ERC values
|
---|
143 | erc = Enumerable.Range(0, 10).Select(_ => Rand.RandNormal(random) * 10).ToArray();
|
---|
144 |
|
---|
145 | char firstVar = 'a';
|
---|
146 | char lastVar = Convert.ToChar(Convert.ToByte('a') + d - 1);
|
---|
147 | if (!useConstantOpt) {
|
---|
148 | this.grammar = new Grammar(grammarString.Replace("<variables>", firstVar + " .. " + lastVar));
|
---|
149 | this.TreeBasedGPGrammar = new Grammar(treeGrammarString.Replace("<variables>", firstVar + " .. " + lastVar));
|
---|
150 | } else {
|
---|
151 | this.grammar = new Grammar(grammarConstOptString.Replace("<variables>", firstVar + " .. " + lastVar));
|
---|
152 | this.TreeBasedGPGrammar = new Grammar(treeGrammarConstOptString.Replace("<variables>", firstVar + " .. " + lastVar));
|
---|
153 | }
|
---|
154 | }
|
---|
155 |
|
---|
156 |
|
---|
157 | public double BestKnownQuality(int maxLen) {
|
---|
158 | // for now only an upper bound is returned, ideally we have an R² of 1.0
|
---|
159 | return 1.0;
|
---|
160 | }
|
---|
161 |
|
---|
162 | public IGrammar Grammar {
|
---|
163 | get { return grammar; }
|
---|
164 | }
|
---|
165 |
|
---|
166 | public double Evaluate(string sentence) {
|
---|
167 | //var extender = new ExpressionExtender();
|
---|
168 | //sentence = extender.CanonicalRepresentation(sentence);
|
---|
169 | if (useConstantOpt)
|
---|
170 | return OptimizeConstantsAndEvaluate(sentence);
|
---|
171 | else {
|
---|
172 | //Debug.Assert(SimpleEvaluate(sentence) == SimpleEvaluate(extender.CanonicalRepresentation(sentence)));
|
---|
173 | return SimpleEvaluate(sentence);
|
---|
174 | }
|
---|
175 | }
|
---|
176 |
|
---|
177 | public double SimpleEvaluate(string sentence) {
|
---|
178 | var interpreter = new ExpressionInterpreter();
|
---|
179 | var rowData = new double[d];
|
---|
180 | return HeuristicLab.Common.Extensions.RSq(y, Enumerable.Range(0, N).Select(i => {
|
---|
181 | for (int j = 0; j < d; j++) rowData[j] = x[i, j];
|
---|
182 | return interpreter.Interpret(sentence, rowData, erc);
|
---|
183 | }));
|
---|
184 | }
|
---|
185 |
|
---|
186 |
|
---|
187 | public string CanonicalRepresentation(string phrase) {
|
---|
188 | var extender = new ExpressionExtender();
|
---|
189 | return extender.CanonicalRepresentation(phrase);
|
---|
190 | }
|
---|
191 |
|
---|
192 | public IEnumerable<Feature> GetFeatures(string phrase) {
|
---|
193 | throw new NotImplementedException();
|
---|
194 | //phrase = CanonicalRepresentation(phrase);
|
---|
195 | //return phrase.Split('+').Distinct().Select(t => new Feature(t, 1.0));
|
---|
196 | // return new Feature[] { new Feature(phrase, 1.0) };
|
---|
197 | }
|
---|
198 |
|
---|
199 | public bool IsOptimalPhrase(string phrase) {
|
---|
200 | return false;
|
---|
201 | }
|
---|
202 |
|
---|
203 |
|
---|
204 | public double OptimizeConstantsAndEvaluate(string sentence) {
|
---|
205 | AutoDiff.Term func;
|
---|
206 | int n = x.GetLength(0);
|
---|
207 | int m = x.GetLength(1);
|
---|
208 |
|
---|
209 | var compiler = new ExpressionCompiler();
|
---|
210 | Variable[] variables = Enumerable.Range(0, m).Select(_ => new Variable()).ToArray();
|
---|
211 | Variable[] constants;
|
---|
212 | compiler.Compile(sentence, out func, variables, out constants);
|
---|
213 |
|
---|
214 | // constants are manipulated
|
---|
215 |
|
---|
216 | if (!constants.Any()) return SimpleEvaluate(sentence);
|
---|
217 |
|
---|
218 | // L2 regularization
|
---|
219 | // not possible with lsfit, would need to change to minlm below
|
---|
220 | // func = TermBuilder.Sum(func, lambda * TermBuilder.Sum(constants.Select(con => con * con)));
|
---|
221 |
|
---|
222 | AutoDiff.IParametricCompiledTerm compiledFunc = func.Compile(constants, variables); // variate constants, leave variables fixed to data
|
---|
223 |
|
---|
224 | // 10 restarts with random starting points
|
---|
225 | double[] bestStart = null;
|
---|
226 | double bestError = double.PositiveInfinity;
|
---|
227 | int info;
|
---|
228 | alglib.lsfitstate state;
|
---|
229 | alglib.lsfitreport rep;
|
---|
230 | alglib.ndimensional_pfunc function_cx_1_func = CreatePFunc(compiledFunc);
|
---|
231 | alglib.ndimensional_pgrad function_cx_1_grad = CreatePGrad(compiledFunc);
|
---|
232 | for (int t = 0; t < 1; t++) {
|
---|
233 | double[] cStart = constants.Select(_ => Rand.RandNormal(random) * 10).ToArray();
|
---|
234 | double[] cEnd;
|
---|
235 | // start with normally distributed (N(0, 10)) weights
|
---|
236 |
|
---|
237 |
|
---|
238 | int k = cStart.Length;
|
---|
239 |
|
---|
240 |
|
---|
241 | const int maxIterations = 10;
|
---|
242 | try {
|
---|
243 | alglib.lsfitcreatefg(x, y, cStart, n, m, k, false, out state);
|
---|
244 | alglib.lsfitsetcond(state, 0.0, 0.0, maxIterations);
|
---|
245 | //alglib.lsfitsetgradientcheck(state, 0.001);
|
---|
246 | alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, null, null);
|
---|
247 | alglib.lsfitresults(state, out info, out cEnd, out rep);
|
---|
248 | if (info != -7 && rep.rmserror < bestError) {
|
---|
249 | bestStart = cStart;
|
---|
250 | bestError = rep.rmserror;
|
---|
251 | }
|
---|
252 | } catch (ArithmeticException) {
|
---|
253 | return 0.0;
|
---|
254 | } catch (alglib.alglibexception) {
|
---|
255 | return 0.0;
|
---|
256 | }
|
---|
257 | }
|
---|
258 |
|
---|
259 | // 100 iteration steps from the best starting point
|
---|
260 | {
|
---|
261 | double[] c = bestStart;
|
---|
262 |
|
---|
263 | int k = c.Length;
|
---|
264 |
|
---|
265 | const int maxIterations = 100;
|
---|
266 | try {
|
---|
267 | alglib.lsfitcreatefg(x, y, c, n, m, k, false, out state);
|
---|
268 | alglib.lsfitsetcond(state, 0.0, 0.0, maxIterations);
|
---|
269 | //alglib.lsfitsetgradientcheck(state, 0.001);
|
---|
270 | alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, null, null);
|
---|
271 | alglib.lsfitresults(state, out info, out c, out rep);
|
---|
272 | } catch (ArithmeticException) {
|
---|
273 | return 0.0;
|
---|
274 | } catch (alglib.alglibexception) {
|
---|
275 | return 0.0;
|
---|
276 | }
|
---|
277 | //info == -7 => constant optimization failed due to wrong gradient
|
---|
278 | if (info == -7) throw new ArgumentException();
|
---|
279 | {
|
---|
280 | var rowData = new double[d];
|
---|
281 | return Math.Round(HeuristicLab.Common.Extensions.RSq(y, Enumerable.Range(0, N).Select(i => {
|
---|
282 | for (int j = 0; j < d; j++) rowData[j] = x[i, j];
|
---|
283 | return compiledFunc.Evaluate(c, rowData);
|
---|
284 | })), 3);
|
---|
285 | }
|
---|
286 | }
|
---|
287 | }
|
---|
288 |
|
---|
289 |
|
---|
290 | private static alglib.ndimensional_pfunc CreatePFunc(AutoDiff.IParametricCompiledTerm compiledFunc) {
|
---|
291 | return (double[] c, double[] x, ref double func, object o) => {
|
---|
292 | func = compiledFunc.Evaluate(c, x);
|
---|
293 | };
|
---|
294 | }
|
---|
295 |
|
---|
296 | private static alglib.ndimensional_pgrad CreatePGrad(AutoDiff.IParametricCompiledTerm compiledFunc) {
|
---|
297 | return (double[] c, double[] x, ref double func, double[] grad, object o) => {
|
---|
298 | var tupel = compiledFunc.Differentiate(c, x);
|
---|
299 | func = tupel.Item2;
|
---|
300 | Array.Copy(tupel.Item1, grad, grad.Length);
|
---|
301 | };
|
---|
302 | }
|
---|
303 |
|
---|
304 | public IGrammar TreeBasedGPGrammar { get; private set; }
|
---|
305 | public string ConvertTreeToSentence(ISymbolicExpressionTree tree) {
|
---|
306 | var sb = new StringBuilder();
|
---|
307 |
|
---|
308 | TreeToSentence(tree.Root.GetSubtree(0).GetSubtree(0), sb);
|
---|
309 |
|
---|
310 | return sb.ToString();
|
---|
311 | }
|
---|
312 |
|
---|
313 |
|
---|
314 | private void TreeToSentence(ISymbolicExpressionTreeNode treeNode, StringBuilder sb) {
|
---|
315 | if (treeNode.SubtreeCount == 0) {
|
---|
316 | // terminal
|
---|
317 | sb.Append(treeNode.Symbol.Name);
|
---|
318 | } else {
|
---|
319 | string op = string.Empty;
|
---|
320 | switch (treeNode.Symbol.Name) {
|
---|
321 | case "S": op = "+"; break;
|
---|
322 | case "N": op = "-"; break;
|
---|
323 | case "P": op = "*"; break;
|
---|
324 | case "D": op = "%"; break;
|
---|
325 | default: {
|
---|
326 | Debug.Assert(treeNode.SubtreeCount == 1);
|
---|
327 | break;
|
---|
328 | }
|
---|
329 | }
|
---|
330 | // nonterminal
|
---|
331 | if (treeNode.SubtreeCount > 1) sb.Append("(");
|
---|
332 | TreeToSentence(treeNode.Subtrees.First(), sb);
|
---|
333 | foreach (var subTree in treeNode.Subtrees.Skip(1)) {
|
---|
334 | sb.Append(op);
|
---|
335 | TreeToSentence(subTree, sb);
|
---|
336 | }
|
---|
337 | if (treeNode.SubtreeCount > 1) sb.Append(")");
|
---|
338 | }
|
---|
339 | }
|
---|
340 | }
|
---|
341 | }
|
---|