1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using System.Text;
|
---|
5 | using System.Threading.Tasks;
|
---|
6 | using HeuristicLab.Common;
|
---|
7 |
|
---|
8 | namespace HeuristicLab.Algorithms.Bandits {
|
---|
9 | // custom testcase for extreme hunter policy
|
---|
10 | public class MixtureBandit : IBandit {
|
---|
11 | private double[] mu;
|
---|
12 | private double[] sigma;
|
---|
13 | private double[] pZero;
|
---|
14 | public int NumArms { get { return mu.Length; } }
|
---|
15 | public double OptimalExpectedReward { get; private set; } // reward of the best arm, for calculating regret
|
---|
16 | public int OptimalExpectedRewardArm { get; private set; }
|
---|
17 | public int OptimalMaximalRewardArm { get; private set; }
|
---|
18 | public double MaxReward { get; private set; }
|
---|
19 | public double MinReward { get; private set; }
|
---|
20 | private readonly Random random;
|
---|
21 | public MixtureBandit(Random random, IEnumerable<double> mu) : this(random, mu, mu.Select(_ => 1.0), mu.Select(_ => 0.0), double.PositiveInfinity) { }
|
---|
22 | public MixtureBandit(Random random, IEnumerable<double> mu, IEnumerable<double> sigma, IEnumerable<double> pZero, double maxReward) { // probability of a zero reward
|
---|
23 | this.mu = mu.ToArray();
|
---|
24 | this.sigma = sigma.ToArray();
|
---|
25 | this.pZero = pZero.ToArray();
|
---|
26 | this.MaxReward = maxReward;
|
---|
27 | this.random = random;
|
---|
28 |
|
---|
29 | double optimalExpectedReward;
|
---|
30 | int bestArmForMaxReward, bestArmForExpReward;
|
---|
31 |
|
---|
32 | BanditHelper.SampleArms(random, this, 100000, out optimalExpectedReward, out bestArmForExpReward, out bestArmForMaxReward);
|
---|
33 | OptimalExpectedReward = optimalExpectedReward;
|
---|
34 | OptimalExpectedRewardArm = bestArmForExpReward;
|
---|
35 | OptimalMaximalRewardArm = bestArmForMaxReward;
|
---|
36 | }
|
---|
37 |
|
---|
38 | public double Pull(int arm) {
|
---|
39 | if (random.NextDouble() < pZero[arm]) return 0.0;
|
---|
40 | var z = Rand.RandNormal(random);
|
---|
41 | var x = z * sigma[arm] + mu[arm];
|
---|
42 | return Math.Max(0, Math.Min(MaxReward, x));
|
---|
43 | }
|
---|
44 | }
|
---|
45 | }
|
---|