1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Diagnostics;
|
---|
4 | using System.Linq;
|
---|
5 | using System.Text;
|
---|
6 | using System.Threading.Tasks;
|
---|
7 | using HeuristicLab.Common;
|
---|
8 | using HeuristicLab.Problems.GrammaticalOptimization;
|
---|
9 |
|
---|
10 | namespace HeuristicLab.Algorithms.Bandits.GrammarPolicies {
|
---|
11 | // resampling is not prevented
|
---|
12 | public sealed class GenericPolicy : IGrammarPolicy {
|
---|
13 | private Dictionary<string, double> Q; // stores the necessary information for bandit policies for each state
|
---|
14 | private Dictionary<string, int> T; // tries;
|
---|
15 | private Dictionary<string, List<string>> followStates;
|
---|
16 | private readonly IProblem problem;
|
---|
17 | private readonly HashSet<string> done; // contains all visited chains
|
---|
18 |
|
---|
19 | public GenericPolicy(IProblem problem) {
|
---|
20 | this.problem = problem;
|
---|
21 | this.Q = new Dictionary<string, double>();
|
---|
22 | this.T = new Dictionary<string, int>();
|
---|
23 | this.followStates = new Dictionary<string, List<string>>();
|
---|
24 | this.done = new HashSet<string>();
|
---|
25 | }
|
---|
26 |
|
---|
27 | private double[] activeAfterStates; // don't allocate each time
|
---|
28 | private int[] actionIndexMap; // don't allocate each time
|
---|
29 |
|
---|
30 | public bool TrySelect(System.Random random, string curState, IEnumerable<string> afterStates, out int selectedStateIdx) {
|
---|
31 | // fail if all states are done (corresponding state infos are disabled)
|
---|
32 | if (afterStates.All(s => Done(s))) {
|
---|
33 | // fail because all follow states have already been visited => also disable the current state (if we can be sure that it has been fully explored)
|
---|
34 | MarkAsDone(curState);
|
---|
35 |
|
---|
36 | selectedStateIdx = -1;
|
---|
37 | return false;
|
---|
38 | }
|
---|
39 |
|
---|
40 | if (activeAfterStates == null || activeAfterStates.Length < afterStates.Count()) {
|
---|
41 | activeAfterStates = new double[afterStates.Count()];
|
---|
42 | actionIndexMap = new int[afterStates.Count()];
|
---|
43 | }
|
---|
44 | if (!followStates.ContainsKey(curState)) {
|
---|
45 | followStates[curState] = new List<string>(afterStates);
|
---|
46 | }
|
---|
47 | var idx = 0; int originalIdx = 0;
|
---|
48 | foreach (var afterState in afterStates) {
|
---|
49 | if (!Done(afterState)) {
|
---|
50 | activeAfterStates[idx] = CalculateValue(afterState);
|
---|
51 | actionIndexMap[idx] = originalIdx;
|
---|
52 | idx++;
|
---|
53 | }
|
---|
54 | originalIdx++;
|
---|
55 | }
|
---|
56 |
|
---|
57 |
|
---|
58 | //var eps = Math.Max(500.0 / (GetTries(curState) + 1), 0.01);
|
---|
59 | //var eps = 10.0 / Math.Sqrt(GetTries(curState) + 1);
|
---|
60 | var eps = 0.01;
|
---|
61 | selectedStateIdx = actionIndexMap[SelectEpsGreedy(random, activeAfterStates.Take(idx), eps)];
|
---|
62 |
|
---|
63 | UpdateValue(curState, afterStates);
|
---|
64 |
|
---|
65 | return true;
|
---|
66 | }
|
---|
67 |
|
---|
68 | private double CalculateValue(string chain) {
|
---|
69 | var features = problem.GetFeatures(chain);
|
---|
70 | var sum = 0.0;
|
---|
71 | foreach (var f in features) {
|
---|
72 | // if (GetTries(f.Id) == 0)
|
---|
73 | // sum = 0.0;
|
---|
74 | // else
|
---|
75 | sum += GetValue(f.Id) * f.Value;
|
---|
76 | }
|
---|
77 | return sum;
|
---|
78 | }
|
---|
79 |
|
---|
80 | private void UpdateValue(string curChain, IEnumerable<string> alternatives) {
|
---|
81 | const double gamma = 1;
|
---|
82 | const double alpha = 0.01;
|
---|
83 | var maxNextQ = alternatives
|
---|
84 | .Select(CalculateValue).Max();
|
---|
85 |
|
---|
86 | var delta = gamma * maxNextQ - CalculateValue(curChain);
|
---|
87 |
|
---|
88 | foreach (var f in problem.GetFeatures(curChain)) {
|
---|
89 |
|
---|
90 | Q[f.Id] = GetValue(f.Id) + alpha * delta * f.Value;
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | private void UpdateLastValue(string terminalChain, double reward) {
|
---|
95 | const double alpha = 0.01;
|
---|
96 | var delta = reward - CalculateValue(terminalChain);
|
---|
97 | foreach (var f in problem.GetFeatures(terminalChain)) {
|
---|
98 | Q[f.Id] = GetValue(f.Id) + alpha * delta * f.Value;
|
---|
99 | }
|
---|
100 | }
|
---|
101 |
|
---|
102 |
|
---|
103 | private int SelectBoltzmann(System.Random random, IEnumerable<double> qs, double beta = 10) {
|
---|
104 | // select best
|
---|
105 |
|
---|
106 | // try any of the untries actions randomly
|
---|
107 | // for RoyalSequence it is much better to select the actions in the order of occurrence (all terminal alternatives first)
|
---|
108 | //if (myActionInfos.Any(aInfo => !aInfo.Disabled && aInfo.Tries == 0)) {
|
---|
109 | // return myActionInfos
|
---|
110 | // .Select((aInfo, idx) => new { aInfo, idx })
|
---|
111 | // .Where(p => !p.aInfo.Disabled)
|
---|
112 | // .Where(p => p.aInfo.Tries == 0)
|
---|
113 | // .SelectRandom(random).idx;
|
---|
114 | //}
|
---|
115 |
|
---|
116 | var w = from q in qs
|
---|
117 | select Math.Exp(beta * q);
|
---|
118 |
|
---|
119 | var bestAction = Enumerable.Range(0, qs.Count()).SampleProportional(random, w);
|
---|
120 | Debug.Assert(bestAction >= 0);
|
---|
121 | return bestAction;
|
---|
122 | }
|
---|
123 |
|
---|
124 | private int SelectEpsGreedy(System.Random random, IEnumerable<double> qs, double eps = 0.2) {
|
---|
125 | if (random.NextDouble() >= eps) { // eps == 0 should be equivalent to pure exploitation, eps == 1 is pure exploration
|
---|
126 | // select best
|
---|
127 | var bestActions = new List<int>();
|
---|
128 | double bestQ = double.NegativeInfinity;
|
---|
129 |
|
---|
130 | int aIdx = -1;
|
---|
131 | foreach (var q in qs) {
|
---|
132 | aIdx++;
|
---|
133 |
|
---|
134 | if (q > bestQ) {
|
---|
135 | bestActions.Clear();
|
---|
136 | bestActions.Add(aIdx);
|
---|
137 | bestQ = q;
|
---|
138 | } else if (HeuristicLab.Common.Extensions.IsAlmost(q,bestQ)) {
|
---|
139 | bestActions.Add(aIdx);
|
---|
140 | }
|
---|
141 | }
|
---|
142 | Debug.Assert(bestActions.Any());
|
---|
143 | return bestActions.SelectRandom(random);
|
---|
144 | } else {
|
---|
145 | // select random
|
---|
146 | return SelectRandom(random, qs);
|
---|
147 | }
|
---|
148 | }
|
---|
149 |
|
---|
150 | private int SelectRandom(System.Random random, IEnumerable<double> qs) {
|
---|
151 | return qs
|
---|
152 | .Select((aInfo, idx) => Tuple.Create(aInfo, idx))
|
---|
153 | .SelectRandom(random).Item2;
|
---|
154 | }
|
---|
155 |
|
---|
156 |
|
---|
157 | public void UpdateReward(IEnumerable<string> chainTrajectory, double reward) {
|
---|
158 | // // only updates the last chain because we already update values after each step
|
---|
159 | // var reverseChains = chainTrajectory.Reverse();
|
---|
160 | // var terminalChain = reverseChains.First();
|
---|
161 | //
|
---|
162 | // UpdateValue(terminalChain, reward);
|
---|
163 | //
|
---|
164 | // foreach (var chain in reverseChains.Skip(1)) {
|
---|
165 | //
|
---|
166 | // var maxNextQ = followStates[chain]
|
---|
167 | // //.Where(s=>!Done(s))
|
---|
168 | // .Select(GetValue).Max();
|
---|
169 | //
|
---|
170 | // UpdateValue(chain, maxNextQ);
|
---|
171 | // }
|
---|
172 | var terminalChain = chainTrajectory.Last();
|
---|
173 | UpdateLastValue(terminalChain, reward);
|
---|
174 | if (problem.Grammar.IsTerminal(terminalChain)) MarkAsDone(terminalChain);
|
---|
175 | }
|
---|
176 |
|
---|
177 |
|
---|
178 | public void Reset() {
|
---|
179 | Q.Clear();
|
---|
180 | T.Clear();
|
---|
181 | done.Clear();
|
---|
182 | followStates.Clear();
|
---|
183 | }
|
---|
184 |
|
---|
185 |
|
---|
186 | private bool Done(string chain) {
|
---|
187 | return done.Contains(chain);
|
---|
188 | }
|
---|
189 |
|
---|
190 | private void MarkAsDone(string chain) {
|
---|
191 | done.Add(chain);
|
---|
192 | }
|
---|
193 |
|
---|
194 |
|
---|
195 | public int GetTries(string fId) {
|
---|
196 | if (T.ContainsKey(fId)) return T[fId];
|
---|
197 | else return 0;
|
---|
198 | }
|
---|
199 |
|
---|
200 | public double GetValue(string fId) {
|
---|
201 | // var s = CalcState(chain);
|
---|
202 | if (Q.ContainsKey(fId)) return Q[fId];
|
---|
203 | else return 0.0; // TODO: check alternatives
|
---|
204 | }
|
---|
205 |
|
---|
206 | // private string CalcState(string chain) {
|
---|
207 | // var f = problem.GetFeatures(chain);
|
---|
208 | // // this policy only works for problems that return exactly one feature (the 'state')
|
---|
209 | // if (f.Skip(1).Any()) throw new ArgumentException();
|
---|
210 | // return f.First().Id;
|
---|
211 | // }
|
---|
212 |
|
---|
213 | public void PrintStats() {
|
---|
214 | Console.WriteLine(Q.Values.Max());
|
---|
215 | // var topTries = Q.Keys.OrderByDescending(key => T[key]).Take(50);
|
---|
216 | // var topQs = Q.Keys/*.Where(key => key.Contains("E"))*/.OrderByDescending(key => Q[key]).Take(50);
|
---|
217 | // foreach (var t in topTries.Zip(topQs, Tuple.Create)) {
|
---|
218 | // var id1 = t.Item1;
|
---|
219 | // var id2 = t.Item2;
|
---|
220 | // Console.WriteLine("{0,30} {1,6} {2:N4} {3,30} {4,6} {5:N4}", id1, T[id1], Q[id1], id2, T[id2], Q[id2]);
|
---|
221 | // }
|
---|
222 |
|
---|
223 | foreach (var option in new String[]
|
---|
224 | {
|
---|
225 | "a*b", "c*d", "a*b+c*d", "e*f", "a*b+c*d+e*f",
|
---|
226 | "a*b+a*b", "c*d+c*d",
|
---|
227 | "a*a", "a*b","a*c","a*d","a*e","a*f","a*g","a*h","a*i","a*j",
|
---|
228 | "a*b","c*d","e*f","a*c","a*f","a*i","a*i*g","c*f","c*f*j",
|
---|
229 | "b+c","a+c","b+d","a+d",
|
---|
230 | "a*b+c*d+e*f", "a*b+c*d+e*f+a", "a*b+c*d+e*f+b", "a*b+c*d+e*f+c", "a*b+c*d+e*f+d","a*b+c*d+e*f+e", "a*b+c*d+e*f+f", "a*b+c*d+e*f+g", "a*b+c*d+e*f+h", "a*b+c*d+e*f+i", "a*b+c*d+e*f+j",
|
---|
231 | "a*b+c*d+e*f+a*g*i+c*j*f"
|
---|
232 | }) {
|
---|
233 | Console.WriteLine("{0,-10} {1:N5}", option, CalculateValue(option));
|
---|
234 | }
|
---|
235 |
|
---|
236 | // var topQs = Q.Keys/*.Where(key => key.Contains("E"))*/.OrderByDescending(key => Math.Abs(Q[key])).Take(10);
|
---|
237 | // foreach (var t in topQs) {
|
---|
238 | // Console.WriteLine("{0,30} {1:N4}", t, Q[t]);
|
---|
239 | // }
|
---|
240 | }
|
---|
241 | }
|
---|
242 | }
|
---|