1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Diagnostics;
|
---|
4 | using System.Linq;
|
---|
5 | using System.Text;
|
---|
6 | using System.Text.RegularExpressions;
|
---|
7 | using System.Threading.Tasks;
|
---|
8 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
9 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
10 | using HeuristicLab.Common;
|
---|
11 | using HeuristicLab.Problems.DataAnalysis;
|
---|
12 | using HeuristicLab.Problems.GrammaticalOptimization;
|
---|
13 |
|
---|
14 | namespace HeuristicLab.Algorithms.Bandits.GrammarPolicies {
|
---|
15 | // this represents grammar policies that use one of the available bandit policies for state selection
|
---|
16 | // any bandit policy can be used to select actions for states
|
---|
17 | // a separate datastructure is used to store visited states and to prevent revisiting of states
|
---|
18 | public sealed class GenericGrammarPolicy : IGrammarPolicy {
|
---|
19 | private Dictionary<string, IBanditPolicyActionInfo> stateInfo; // stores the necessary information for bandit policies for each state (=canonical phrase)
|
---|
20 | private HashSet<string> done;
|
---|
21 | private readonly bool useCanonicalPhrases;
|
---|
22 | private readonly IProblem problem;
|
---|
23 | private readonly IBanditPolicy banditPolicy;
|
---|
24 | public double[] OptimalPulls { get; private set; }
|
---|
25 |
|
---|
26 | public GenericGrammarPolicy(IProblem problem, IBanditPolicy banditPolicy, bool useCanonicalPhrases = false) {
|
---|
27 | this.useCanonicalPhrases = useCanonicalPhrases;
|
---|
28 | this.problem = problem;
|
---|
29 | this.banditPolicy = banditPolicy;
|
---|
30 | this.stateInfo = new Dictionary<string, IBanditPolicyActionInfo>();
|
---|
31 | this.done = new HashSet<string>();
|
---|
32 | }
|
---|
33 |
|
---|
34 | private IBanditPolicyActionInfo[] activeAfterStates; // don't allocate each time
|
---|
35 | private int[] actionIndexMap; // don't allocate each time
|
---|
36 |
|
---|
37 | public bool TrySelect(System.Random random, string curState, IEnumerable<string> afterStates, out int selectedStateIdx) {
|
---|
38 | //// only for debugging
|
---|
39 | //if (done.Count == 30000) {
|
---|
40 | // foreach (var pair in stateInfo) {
|
---|
41 | // var state = pair.Key;
|
---|
42 | // var info = (DefaultPolicyActionInfo)pair.Value;
|
---|
43 | // if (info.Tries > 0) {
|
---|
44 | // Console.WriteLine("{0};{1};{2};{3};{4};{5}", state, info.Tries, info.Value, info.MaxReward,
|
---|
45 | // optimalSolutions.Contains(problem.CanonicalRepresentation(state)) ? 1 : 0,
|
---|
46 | // string.Join(";", GenerateFeaturesPoly10(state)));
|
---|
47 | // }
|
---|
48 | // }
|
---|
49 | // System.Environment.Exit(1);
|
---|
50 | //}
|
---|
51 |
|
---|
52 | // fail if all states are done (corresponding state infos are disabled)
|
---|
53 | if (afterStates.All(s => Done(s))) {
|
---|
54 | // fail because all follow states have already been visited => also disable the current state (if we can be sure that it has been fully explored)
|
---|
55 | MarkAsDone(curState);
|
---|
56 |
|
---|
57 | selectedStateIdx = -1;
|
---|
58 | return false;
|
---|
59 | }
|
---|
60 |
|
---|
61 | // determine active actions (not done yet) and create an array to map the selected index back to original actions
|
---|
62 | if (activeAfterStates == null || activeAfterStates.Length < afterStates.Count()) {
|
---|
63 | activeAfterStates = new IBanditPolicyActionInfo[afterStates.Count()];
|
---|
64 | actionIndexMap = new int[afterStates.Count()];
|
---|
65 | }
|
---|
66 | var idx = 0; int originalIdx = 0;
|
---|
67 | foreach (var afterState in afterStates) {
|
---|
68 | if (!Done(afterState)) {
|
---|
69 | activeAfterStates[idx] = GetStateInfo(afterState);
|
---|
70 | actionIndexMap[idx] = originalIdx;
|
---|
71 | idx++;
|
---|
72 | }
|
---|
73 | originalIdx++;
|
---|
74 | }
|
---|
75 |
|
---|
76 | //// select terminals first
|
---|
77 | //var terminalAfterstates = afterStates.Select((s, i) => new { s, i }).FirstOrDefault(t => !Done(t.s) && problem.Grammar.IsTerminal(t.s));
|
---|
78 | //if (terminalAfterstates != null) {
|
---|
79 | // selectedStateIdx = terminalAfterstates.i;
|
---|
80 | // return true;
|
---|
81 | //}
|
---|
82 |
|
---|
83 | if (valueApproximation == null) {
|
---|
84 | // no approximation yet? --> use bandit
|
---|
85 | selectedStateIdx = actionIndexMap[banditPolicy.SelectAction(random, activeAfterStates.Take(idx))];
|
---|
86 | } else if (afterStates.Any(s => problem.Grammar.IsTerminal(s) && !Done(s))) {
|
---|
87 | selectedStateIdx = SelectionMaxValueTerminalAction(random, afterStates);
|
---|
88 | } else {
|
---|
89 | // only internal states? --> use bandit
|
---|
90 | selectedStateIdx = actionIndexMap[banditPolicy.SelectAction(random, activeAfterStates.Take(idx))];
|
---|
91 | }
|
---|
92 | return true;
|
---|
93 | }
|
---|
94 |
|
---|
95 | private int SelectionMaxValueTerminalAction(System.Random random, IEnumerable<string> afterStates) {
|
---|
96 | int idx = 0;
|
---|
97 | var terminalStates = new List<string>();
|
---|
98 | var originalIdx = new List<int>();
|
---|
99 | foreach (var state in afterStates) {
|
---|
100 | if (problem.Grammar.IsTerminal(state) && !Done(state)) {
|
---|
101 | terminalStates.Add(state);
|
---|
102 | originalIdx.Add(idx);
|
---|
103 | }
|
---|
104 | idx++;
|
---|
105 | }
|
---|
106 |
|
---|
107 | return originalIdx[SelectionMaxValueAction(random, terminalStates)];
|
---|
108 | }
|
---|
109 |
|
---|
110 | private IRegressionSolution valueApproximation;
|
---|
111 | private int SelectionMaxValueAction(System.Random random, IEnumerable<string> afterStates) {
|
---|
112 |
|
---|
113 | // eps greedy
|
---|
114 | //if (random.NextDouble() < 0.1) return Enumerable.Range(0, afterStates.Count()).SelectRandom(random);
|
---|
115 |
|
---|
116 | Dataset ds;
|
---|
117 | string[] variablesNames;
|
---|
118 | CreateDataset(afterStates, afterStates.Select<string, IBanditPolicyActionInfo>(_ => null), out ds, out variablesNames);
|
---|
119 |
|
---|
120 | var v = valueApproximation.Model.GetEstimatedValues(ds, Enumerable.Range(0, ds.Rows)).ToArray();
|
---|
121 |
|
---|
122 | //boltzmann exploration
|
---|
123 | //double beta = 100;
|
---|
124 | //var w = v.Select(vi => Math.Exp(beta * vi));
|
---|
125 | //
|
---|
126 | //return Enumerable.Range(0, v.Length).SampleProportional(random, w);
|
---|
127 |
|
---|
128 | return Enumerable.Range(0, v.Length).MaxItems(i => v[i]).SelectRandom(random);
|
---|
129 | }
|
---|
130 |
|
---|
131 | private void UpdateValueApproximation() {
|
---|
132 | Dataset ds;
|
---|
133 | string[] variableNames;
|
---|
134 | CreateDataset(stateInfo.Keys, stateInfo.Values, out ds, out variableNames);
|
---|
135 | var problemData = new RegressionProblemData(ds, variableNames.Skip(1), variableNames.First());
|
---|
136 | //problemData.TestPartition.Start = problemData.TestPartition.End; // all data are training data
|
---|
137 | valueApproximation = GradientBoostedTreesAlgorithmStatic.TrainGbm(problemData, new SquaredErrorLoss(), 50, 0.1,
|
---|
138 | 0.5, 0.5, 100);
|
---|
139 | Console.WriteLine(valueApproximation.TrainingRSquared);
|
---|
140 | Console.WriteLine(valueApproximation.TestRSquared);
|
---|
141 | }
|
---|
142 |
|
---|
143 | private void CreateDataset(IEnumerable<string> states, IEnumerable<IBanditPolicyActionInfo> infos, out Dataset ds, out string[] variableNames) {
|
---|
144 | variableNames = new string[] { "maxValue" }.Concat(GenerateFeaturesPoly10("E").Select((_, i) => "f" + i)).ToArray();
|
---|
145 |
|
---|
146 | int rows = infos.Zip(states, (info, state) => new { info, state }).Count(i => i.info == null || (i.info.Tries == 1 && Done(i.state)));
|
---|
147 | int cols = variableNames.Count();
|
---|
148 |
|
---|
149 | var variableValues = new double[rows, cols];
|
---|
150 | int n = 0;
|
---|
151 | foreach (var pair in states.Zip(infos, Tuple.Create)) {
|
---|
152 | var state = pair.Item1;
|
---|
153 | var info = (DefaultPolicyActionInfo)pair.Item2;
|
---|
154 | if (info == null || (info.Tries == 1 && Done(state))) {
|
---|
155 | if (info != null) {
|
---|
156 | variableValues[n, 0] = info.MaxReward;
|
---|
157 | }
|
---|
158 | int col = 1;
|
---|
159 | foreach (var f in GenerateFeaturesPoly10(state)) {
|
---|
160 | variableValues[n, col++] = f;
|
---|
161 | }
|
---|
162 | n++;
|
---|
163 | }
|
---|
164 | }
|
---|
165 |
|
---|
166 | ds = new Dataset(variableNames, variableValues);
|
---|
167 | }
|
---|
168 |
|
---|
169 |
|
---|
170 | private IBanditPolicyActionInfo GetStateInfo(string state) {
|
---|
171 | var s = CanonicalState(state);
|
---|
172 | IBanditPolicyActionInfo info;
|
---|
173 | if (!stateInfo.TryGetValue(s, out info)) {
|
---|
174 | info = banditPolicy.CreateActionInfo();
|
---|
175 | stateInfo[s] = info;
|
---|
176 | }
|
---|
177 | return info;
|
---|
178 | }
|
---|
179 |
|
---|
180 | private int rewardUpdatesSinceLastTraining = 0;
|
---|
181 | private HashSet<string> statesWritten = new HashSet<string>();
|
---|
182 | public void UpdateReward(IEnumerable<string> stateTrajectory, double reward) {
|
---|
183 | rewardUpdatesSinceLastTraining++;
|
---|
184 | if (rewardUpdatesSinceLastTraining == 5000) {
|
---|
185 | rewardUpdatesSinceLastTraining = 0;
|
---|
186 | //// write
|
---|
187 | //foreach (var pair in stateInfo) {
|
---|
188 | // var state = pair.Key;
|
---|
189 | // var info = (DefaultPolicyActionInfo)pair.Value;
|
---|
190 | // if (!statesWritten.Contains(state) && info.Tries > 0) {
|
---|
191 | // Console.WriteLine("{0};{1};{2};{3};{4}", state, info.Tries, info.Value, info.MaxReward, string.Join(";", GenerateFeaturesPoly10(state)));
|
---|
192 | // statesWritten.Add(state);
|
---|
193 | // }
|
---|
194 | //}
|
---|
195 | //
|
---|
196 | //Console.WriteLine();
|
---|
197 | //UpdateValueApproximation();
|
---|
198 | }
|
---|
199 |
|
---|
200 | int lvl = 0;
|
---|
201 | foreach (var state in stateTrajectory) {
|
---|
202 | double alpha = 0.99;
|
---|
203 | OptimalPulls[lvl] = alpha * OptimalPulls[lvl] + (1 - alpha) * (problem.IsOptimalPhrase(state) ? 1.0 : 0.0);
|
---|
204 | lvl++;
|
---|
205 |
|
---|
206 | GetStateInfo(state).UpdateReward(reward);
|
---|
207 | //reward *= 0.95;
|
---|
208 | // only the last state can be terminal
|
---|
209 | if (problem.Grammar.IsTerminal(state)) {
|
---|
210 | MarkAsDone(state);
|
---|
211 | }
|
---|
212 | }
|
---|
213 | }
|
---|
214 |
|
---|
215 | private IEnumerable<double> GenerateFeaturesPoly10(string state) {
|
---|
216 | // yield return problem.IsOptimalPhrase(state) ? 1 : 0;
|
---|
217 | foreach (var f in problem.GetFeatures(state)) yield return f.Value;
|
---|
218 |
|
---|
219 | //if (!state.EndsWith("E")) state = state + "+E";
|
---|
220 | //int len = state.Length;
|
---|
221 | //Debug.Assert(state[len - 1] == 'E');
|
---|
222 | //foreach (var sy0 in new char[] { '+', '*' }) {
|
---|
223 | // foreach (var sy1 in problem.Grammar.TerminalSymbols) {
|
---|
224 | // foreach (var sy2 in new char[] { '+', '*' }) {
|
---|
225 | // yield return state.Length > 3 && state[len - 4] == sy0 && state[len - 3] == sy1 && state[len - 2] == sy2 ? 1 : 0;
|
---|
226 | // }
|
---|
227 | // }
|
---|
228 | //}
|
---|
229 |
|
---|
230 | //yield return state.Length;
|
---|
231 | //foreach (var terminalSy in problem.Grammar.TerminalSymbols) {
|
---|
232 | // yield return state.Length > 2 && state[0] == terminalSy && state[1] == '+' ? 1 : 0;
|
---|
233 | // yield return state.Length > 2 && state[0] == terminalSy && state[1] == '*' ? 1 : 0;
|
---|
234 | //}
|
---|
235 | // yield return optimalSolutions.Contains(problem.CanonicalRepresentation(state)) ? 1 : 0;
|
---|
236 | //foreach (var term in optimalTerms) yield return Regex.Matches(problem.CanonicalRepresentation(state), term).Count == 1 ? 1 : 0;
|
---|
237 | //var len = state.Length;
|
---|
238 | //yield return len;
|
---|
239 | //foreach (var t in problem.Grammar.TerminalSymbols) {
|
---|
240 | // yield return state.Count(ch => ch == t);
|
---|
241 | //}
|
---|
242 | //// pairs
|
---|
243 | //foreach (var u in problem.Grammar.TerminalSymbols) {
|
---|
244 | // foreach (var v in problem.Grammar.TerminalSymbols) {
|
---|
245 | // int n = 0;
|
---|
246 | // for (int i = 0; i < state.Length - 1; i++) {
|
---|
247 | // if (state[i] == u && state[i + 1] == v) n++;
|
---|
248 | // }
|
---|
249 | // yield return n;
|
---|
250 | // }
|
---|
251 | //}
|
---|
252 | }
|
---|
253 |
|
---|
254 |
|
---|
255 | public void Reset() {
|
---|
256 | stateInfo.Clear();
|
---|
257 | done.Clear();
|
---|
258 | OptimalPulls = new double[300]; // max sentence length is limited anyway
|
---|
259 | }
|
---|
260 |
|
---|
261 | public int GetTries(string state) {
|
---|
262 | var s = CanonicalState(state);
|
---|
263 | if (stateInfo.ContainsKey(s)) return stateInfo[s].Tries;
|
---|
264 | else return 0;
|
---|
265 | }
|
---|
266 |
|
---|
267 | public double GetValue(string state) {
|
---|
268 | var s = CanonicalState(state);
|
---|
269 | if (stateInfo.ContainsKey(s)) return stateInfo[s].MaxReward;
|
---|
270 | else return 0.0; // TODO: check alternatives
|
---|
271 | }
|
---|
272 |
|
---|
273 | // the canonical states for the value function (banditInfos) and the done set must be distinguished
|
---|
274 | // sequences of different length could have the same canonical representation and can have the same value (banditInfo)
|
---|
275 | // however, if the canonical representation of a state is shorter then we must not mark the canonical state as done when all possible derivations from the initial state have been explored
|
---|
276 | // eg. in the ant problem the canonical representation for ...lllA is ...rA
|
---|
277 | // even though all possible derivations (of limited length) of lllA have been visited we must not mark the state rA as done
|
---|
278 | private void MarkAsDone(string state) {
|
---|
279 | var s = CanonicalState(state);
|
---|
280 | // when the lengths of the canonical string and the original string are the same we also disable the actions
|
---|
281 | // always disable terminals
|
---|
282 | Debug.Assert(s.Length <= state.Length);
|
---|
283 | if (s.Length == state.Length || problem.Grammar.IsTerminal(state)) {
|
---|
284 | Debug.Assert(!done.Contains(s));
|
---|
285 | done.Add(s);
|
---|
286 | } else {
|
---|
287 | // for non-terminals where the canonical string is shorter than the original string we can only disable the canonical representation for all states in the same level
|
---|
288 | Debug.Assert(!done.Contains(s + state.Length));
|
---|
289 | done.Add(s + state.Length); // encode the original length of the state, states in the same level of the tree are treated as equivalent
|
---|
290 | }
|
---|
291 | }
|
---|
292 |
|
---|
293 | // symmetric to MarkDone
|
---|
294 | private bool Done(string state) {
|
---|
295 | var s = CanonicalState(state);
|
---|
296 | if (s.Length == state.Length || problem.Grammar.IsTerminal(state)) {
|
---|
297 | return done.Contains(s);
|
---|
298 | } else {
|
---|
299 | // it is not necessary to visit states if the canonical representation has already been fully explored
|
---|
300 | if (done.Contains(s)) return true;
|
---|
301 | if (done.Contains(s + state.Length)) return true;
|
---|
302 | for (int i = 1; i < state.Length; i++) {
|
---|
303 | if (done.Contains(s + i)) return true;
|
---|
304 | }
|
---|
305 | return false;
|
---|
306 | }
|
---|
307 | }
|
---|
308 |
|
---|
309 | private string CanonicalState(string state) {
|
---|
310 | if (useCanonicalPhrases) {
|
---|
311 | return problem.CanonicalRepresentation(state);
|
---|
312 | } else
|
---|
313 | return state;
|
---|
314 | }
|
---|
315 | }
|
---|
316 | }
|
---|