[11770] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
[11806] | 3 | using System.Diagnostics;
|
---|
[11770] | 4 | using System.Linq;
|
---|
| 5 | using System.Text;
|
---|
[12893] | 6 | using System.Text.RegularExpressions;
|
---|
[11770] | 7 | using System.Threading.Tasks;
|
---|
[12893] | 8 | using HeuristicLab.Algorithms.Bandits.BanditPolicies;
|
---|
| 9 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
[11770] | 10 | using HeuristicLab.Common;
|
---|
[12893] | 11 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[11770] | 12 | using HeuristicLab.Problems.GrammaticalOptimization;
|
---|
| 13 |
|
---|
| 14 | namespace HeuristicLab.Algorithms.Bandits.GrammarPolicies {
|
---|
| 15 | // this represents grammar policies that use one of the available bandit policies for state selection
|
---|
[11806] | 16 | // any bandit policy can be used to select actions for states
|
---|
| 17 | // a separate datastructure is used to store visited states and to prevent revisiting of states
|
---|
| 18 | public sealed class GenericGrammarPolicy : IGrammarPolicy {
|
---|
| 19 | private Dictionary<string, IBanditPolicyActionInfo> stateInfo; // stores the necessary information for bandit policies for each state (=canonical phrase)
|
---|
| 20 | private HashSet<string> done;
|
---|
| 21 | private readonly bool useCanonicalPhrases;
|
---|
[11770] | 22 | private readonly IProblem problem;
|
---|
| 23 | private readonly IBanditPolicy banditPolicy;
|
---|
[12893] | 24 | public double[] OptimalPulls { get; private set; }
|
---|
[11770] | 25 |
|
---|
[11806] | 26 | public GenericGrammarPolicy(IProblem problem, IBanditPolicy banditPolicy, bool useCanonicalPhrases = false) {
|
---|
| 27 | this.useCanonicalPhrases = useCanonicalPhrases;
|
---|
[11770] | 28 | this.problem = problem;
|
---|
| 29 | this.banditPolicy = banditPolicy;
|
---|
| 30 | this.stateInfo = new Dictionary<string, IBanditPolicyActionInfo>();
|
---|
[11806] | 31 | this.done = new HashSet<string>();
|
---|
[11770] | 32 | }
|
---|
| 33 |
|
---|
[11806] | 34 | private IBanditPolicyActionInfo[] activeAfterStates; // don't allocate each time
|
---|
| 35 | private int[] actionIndexMap; // don't allocate each time
|
---|
| 36 |
|
---|
[12893] | 37 | public bool TrySelect(System.Random random, string curState, IEnumerable<string> afterStates, out int selectedStateIdx) {
|
---|
| 38 | //// only for debugging
|
---|
| 39 | //if (done.Count == 30000) {
|
---|
| 40 | // foreach (var pair in stateInfo) {
|
---|
| 41 | // var state = pair.Key;
|
---|
| 42 | // var info = (DefaultPolicyActionInfo)pair.Value;
|
---|
| 43 | // if (info.Tries > 0) {
|
---|
| 44 | // Console.WriteLine("{0};{1};{2};{3};{4};{5}", state, info.Tries, info.Value, info.MaxReward,
|
---|
| 45 | // optimalSolutions.Contains(problem.CanonicalRepresentation(state)) ? 1 : 0,
|
---|
| 46 | // string.Join(";", GenerateFeaturesPoly10(state)));
|
---|
| 47 | // }
|
---|
| 48 | // }
|
---|
| 49 | // System.Environment.Exit(1);
|
---|
| 50 | //}
|
---|
| 51 |
|
---|
[11793] | 52 | // fail if all states are done (corresponding state infos are disabled)
|
---|
[11806] | 53 | if (afterStates.All(s => Done(s))) {
|
---|
[11770] | 54 | // fail because all follow states have already been visited => also disable the current state (if we can be sure that it has been fully explored)
|
---|
[11806] | 55 | MarkAsDone(curState);
|
---|
[11792] | 56 |
|
---|
[11793] | 57 | selectedStateIdx = -1;
|
---|
[11770] | 58 | return false;
|
---|
| 59 | }
|
---|
| 60 |
|
---|
[11806] | 61 | // determine active actions (not done yet) and create an array to map the selected index back to original actions
|
---|
| 62 | if (activeAfterStates == null || activeAfterStates.Length < afterStates.Count()) {
|
---|
| 63 | activeAfterStates = new IBanditPolicyActionInfo[afterStates.Count()];
|
---|
| 64 | actionIndexMap = new int[afterStates.Count()];
|
---|
| 65 | }
|
---|
| 66 | var idx = 0; int originalIdx = 0;
|
---|
| 67 | foreach (var afterState in afterStates) {
|
---|
| 68 | if (!Done(afterState)) {
|
---|
| 69 | activeAfterStates[idx] = GetStateInfo(afterState);
|
---|
| 70 | actionIndexMap[idx] = originalIdx;
|
---|
| 71 | idx++;
|
---|
| 72 | }
|
---|
| 73 | originalIdx++;
|
---|
| 74 | }
|
---|
[11770] | 75 |
|
---|
[12893] | 76 | //// select terminals first
|
---|
| 77 | //var terminalAfterstates = afterStates.Select((s, i) => new { s, i }).FirstOrDefault(t => !Done(t.s) && problem.Grammar.IsTerminal(t.s));
|
---|
| 78 | //if (terminalAfterstates != null) {
|
---|
| 79 | // selectedStateIdx = terminalAfterstates.i;
|
---|
| 80 | // return true;
|
---|
| 81 | //}
|
---|
[11806] | 82 |
|
---|
[12893] | 83 | if (valueApproximation == null) {
|
---|
| 84 | // no approximation yet? --> use bandit
|
---|
| 85 | selectedStateIdx = actionIndexMap[banditPolicy.SelectAction(random, activeAfterStates.Take(idx))];
|
---|
| 86 | } else if (afterStates.Any(s => problem.Grammar.IsTerminal(s) && !Done(s))) {
|
---|
| 87 | selectedStateIdx = SelectionMaxValueTerminalAction(random, afterStates);
|
---|
| 88 | } else {
|
---|
| 89 | // only internal states? --> use bandit
|
---|
| 90 | selectedStateIdx = actionIndexMap[banditPolicy.SelectAction(random, activeAfterStates.Take(idx))];
|
---|
| 91 | }
|
---|
[11770] | 92 | return true;
|
---|
| 93 | }
|
---|
| 94 |
|
---|
[12893] | 95 | private int SelectionMaxValueTerminalAction(System.Random random, IEnumerable<string> afterStates) {
|
---|
| 96 | int idx = 0;
|
---|
| 97 | var terminalStates = new List<string>();
|
---|
| 98 | var originalIdx = new List<int>();
|
---|
| 99 | foreach (var state in afterStates) {
|
---|
| 100 | if (problem.Grammar.IsTerminal(state) && !Done(state)) {
|
---|
| 101 | terminalStates.Add(state);
|
---|
| 102 | originalIdx.Add(idx);
|
---|
| 103 | }
|
---|
| 104 | idx++;
|
---|
| 105 | }
|
---|
[11806] | 106 |
|
---|
[12893] | 107 | return originalIdx[SelectionMaxValueAction(random, terminalStates)];
|
---|
| 108 | }
|
---|
[11806] | 109 |
|
---|
[12893] | 110 | private IRegressionSolution valueApproximation;
|
---|
| 111 | private int SelectionMaxValueAction(System.Random random, IEnumerable<string> afterStates) {
|
---|
| 112 |
|
---|
| 113 | // eps greedy
|
---|
| 114 | //if (random.NextDouble() < 0.1) return Enumerable.Range(0, afterStates.Count()).SelectRandom(random);
|
---|
| 115 |
|
---|
| 116 | Dataset ds;
|
---|
| 117 | string[] variablesNames;
|
---|
| 118 | CreateDataset(afterStates, afterStates.Select<string, IBanditPolicyActionInfo>(_ => null), out ds, out variablesNames);
|
---|
| 119 |
|
---|
| 120 | var v = valueApproximation.Model.GetEstimatedValues(ds, Enumerable.Range(0, ds.Rows)).ToArray();
|
---|
| 121 |
|
---|
| 122 | //boltzmann exploration
|
---|
| 123 | //double beta = 100;
|
---|
| 124 | //var w = v.Select(vi => Math.Exp(beta * vi));
|
---|
| 125 | //
|
---|
| 126 | //return Enumerable.Range(0, v.Length).SampleProportional(random, w);
|
---|
| 127 |
|
---|
| 128 | return Enumerable.Range(0, v.Length).MaxItems(i => v[i]).SelectRandom(random);
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | private void UpdateValueApproximation() {
|
---|
| 132 | Dataset ds;
|
---|
| 133 | string[] variableNames;
|
---|
| 134 | CreateDataset(stateInfo.Keys, stateInfo.Values, out ds, out variableNames);
|
---|
| 135 | var problemData = new RegressionProblemData(ds, variableNames.Skip(1), variableNames.First());
|
---|
| 136 | //problemData.TestPartition.Start = problemData.TestPartition.End; // all data are training data
|
---|
| 137 | valueApproximation = GradientBoostedTreesAlgorithmStatic.TrainGbm(problemData, new SquaredErrorLoss(), 50, 0.1,
|
---|
| 138 | 0.5, 0.5, 100);
|
---|
| 139 | Console.WriteLine(valueApproximation.TrainingRSquared);
|
---|
| 140 | Console.WriteLine(valueApproximation.TestRSquared);
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | private void CreateDataset(IEnumerable<string> states, IEnumerable<IBanditPolicyActionInfo> infos, out Dataset ds, out string[] variableNames) {
|
---|
| 144 | variableNames = new string[] { "maxValue" }.Concat(GenerateFeaturesPoly10("E").Select((_, i) => "f" + i)).ToArray();
|
---|
| 145 |
|
---|
| 146 | int rows = infos.Zip(states, (info, state) => new { info, state }).Count(i => i.info == null || (i.info.Tries == 1 && Done(i.state)));
|
---|
| 147 | int cols = variableNames.Count();
|
---|
| 148 |
|
---|
| 149 | var variableValues = new double[rows, cols];
|
---|
| 150 | int n = 0;
|
---|
| 151 | foreach (var pair in states.Zip(infos, Tuple.Create)) {
|
---|
| 152 | var state = pair.Item1;
|
---|
| 153 | var info = (DefaultPolicyActionInfo)pair.Item2;
|
---|
| 154 | if (info == null || (info.Tries == 1 && Done(state))) {
|
---|
| 155 | if (info != null) {
|
---|
| 156 | variableValues[n, 0] = info.MaxReward;
|
---|
| 157 | }
|
---|
| 158 | int col = 1;
|
---|
| 159 | foreach (var f in GenerateFeaturesPoly10(state)) {
|
---|
| 160 | variableValues[n, col++] = f;
|
---|
| 161 | }
|
---|
| 162 | n++;
|
---|
| 163 | }
|
---|
| 164 | }
|
---|
| 165 |
|
---|
| 166 | ds = new Dataset(variableNames, variableValues);
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 |
|
---|
[11793] | 170 | private IBanditPolicyActionInfo GetStateInfo(string state) {
|
---|
[11792] | 171 | var s = CanonicalState(state);
|
---|
[11770] | 172 | IBanditPolicyActionInfo info;
|
---|
| 173 | if (!stateInfo.TryGetValue(s, out info)) {
|
---|
| 174 | info = banditPolicy.CreateActionInfo();
|
---|
| 175 | stateInfo[s] = info;
|
---|
| 176 | }
|
---|
| 177 | return info;
|
---|
| 178 | }
|
---|
| 179 |
|
---|
[12893] | 180 | private int rewardUpdatesSinceLastTraining = 0;
|
---|
| 181 | private HashSet<string> statesWritten = new HashSet<string>();
|
---|
[11806] | 182 | public void UpdateReward(IEnumerable<string> stateTrajectory, double reward) {
|
---|
[12893] | 183 | rewardUpdatesSinceLastTraining++;
|
---|
| 184 | if (rewardUpdatesSinceLastTraining == 5000) {
|
---|
| 185 | rewardUpdatesSinceLastTraining = 0;
|
---|
| 186 | //// write
|
---|
| 187 | //foreach (var pair in stateInfo) {
|
---|
| 188 | // var state = pair.Key;
|
---|
| 189 | // var info = (DefaultPolicyActionInfo)pair.Value;
|
---|
| 190 | // if (!statesWritten.Contains(state) && info.Tries > 0) {
|
---|
| 191 | // Console.WriteLine("{0};{1};{2};{3};{4}", state, info.Tries, info.Value, info.MaxReward, string.Join(";", GenerateFeaturesPoly10(state)));
|
---|
| 192 | // statesWritten.Add(state);
|
---|
| 193 | // }
|
---|
| 194 | //}
|
---|
| 195 | //
|
---|
| 196 | //Console.WriteLine();
|
---|
| 197 | //UpdateValueApproximation();
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | int lvl = 0;
|
---|
[11799] | 201 | foreach (var state in stateTrajectory) {
|
---|
[12893] | 202 | double alpha = 0.99;
|
---|
| 203 | OptimalPulls[lvl] = alpha * OptimalPulls[lvl] + (1 - alpha) * (problem.IsOptimalPhrase(state) ? 1.0 : 0.0);
|
---|
| 204 | lvl++;
|
---|
| 205 |
|
---|
[11799] | 206 | GetStateInfo(state).UpdateReward(reward);
|
---|
[12893] | 207 | //reward *= 0.95;
|
---|
[11799] | 208 | // only the last state can be terminal
|
---|
| 209 | if (problem.Grammar.IsTerminal(state)) {
|
---|
[11806] | 210 | MarkAsDone(state);
|
---|
[11799] | 211 | }
|
---|
[11770] | 212 | }
|
---|
| 213 | }
|
---|
| 214 |
|
---|
[12893] | 215 | private IEnumerable<double> GenerateFeaturesPoly10(string state) {
|
---|
| 216 | // yield return problem.IsOptimalPhrase(state) ? 1 : 0;
|
---|
| 217 | foreach (var f in problem.GetFeatures(state)) yield return f.Value;
|
---|
[11806] | 218 |
|
---|
[12893] | 219 | //if (!state.EndsWith("E")) state = state + "+E";
|
---|
| 220 | //int len = state.Length;
|
---|
| 221 | //Debug.Assert(state[len - 1] == 'E');
|
---|
| 222 | //foreach (var sy0 in new char[] { '+', '*' }) {
|
---|
| 223 | // foreach (var sy1 in problem.Grammar.TerminalSymbols) {
|
---|
| 224 | // foreach (var sy2 in new char[] { '+', '*' }) {
|
---|
| 225 | // yield return state.Length > 3 && state[len - 4] == sy0 && state[len - 3] == sy1 && state[len - 2] == sy2 ? 1 : 0;
|
---|
| 226 | // }
|
---|
| 227 | // }
|
---|
| 228 | //}
|
---|
| 229 |
|
---|
| 230 | //yield return state.Length;
|
---|
| 231 | //foreach (var terminalSy in problem.Grammar.TerminalSymbols) {
|
---|
| 232 | // yield return state.Length > 2 && state[0] == terminalSy && state[1] == '+' ? 1 : 0;
|
---|
| 233 | // yield return state.Length > 2 && state[0] == terminalSy && state[1] == '*' ? 1 : 0;
|
---|
| 234 | //}
|
---|
| 235 | // yield return optimalSolutions.Contains(problem.CanonicalRepresentation(state)) ? 1 : 0;
|
---|
| 236 | //foreach (var term in optimalTerms) yield return Regex.Matches(problem.CanonicalRepresentation(state), term).Count == 1 ? 1 : 0;
|
---|
| 237 | //var len = state.Length;
|
---|
| 238 | //yield return len;
|
---|
| 239 | //foreach (var t in problem.Grammar.TerminalSymbols) {
|
---|
| 240 | // yield return state.Count(ch => ch == t);
|
---|
| 241 | //}
|
---|
| 242 | //// pairs
|
---|
| 243 | //foreach (var u in problem.Grammar.TerminalSymbols) {
|
---|
| 244 | // foreach (var v in problem.Grammar.TerminalSymbols) {
|
---|
| 245 | // int n = 0;
|
---|
| 246 | // for (int i = 0; i < state.Length - 1; i++) {
|
---|
| 247 | // if (state[i] == u && state[i + 1] == v) n++;
|
---|
| 248 | // }
|
---|
| 249 | // yield return n;
|
---|
| 250 | // }
|
---|
| 251 | //}
|
---|
| 252 | }
|
---|
| 253 |
|
---|
| 254 |
|
---|
[11806] | 255 | public void Reset() {
|
---|
[11770] | 256 | stateInfo.Clear();
|
---|
[11806] | 257 | done.Clear();
|
---|
[12893] | 258 | OptimalPulls = new double[300]; // max sentence length is limited anyway
|
---|
[11770] | 259 | }
|
---|
| 260 |
|
---|
[11793] | 261 | public int GetTries(string state) {
|
---|
[11792] | 262 | var s = CanonicalState(state);
|
---|
[11770] | 263 | if (stateInfo.ContainsKey(s)) return stateInfo[s].Tries;
|
---|
| 264 | else return 0;
|
---|
| 265 | }
|
---|
| 266 |
|
---|
[11793] | 267 | public double GetValue(string state) {
|
---|
[11792] | 268 | var s = CanonicalState(state);
|
---|
[12893] | 269 | if (stateInfo.ContainsKey(s)) return stateInfo[s].MaxReward;
|
---|
[11770] | 270 | else return 0.0; // TODO: check alternatives
|
---|
| 271 | }
|
---|
| 272 |
|
---|
[11806] | 273 | // the canonical states for the value function (banditInfos) and the done set must be distinguished
|
---|
| 274 | // sequences of different length could have the same canonical representation and can have the same value (banditInfo)
|
---|
[12290] | 275 | // however, if the canonical representation of a state is shorter then we must not mark the canonical state as done when all possible derivations from the initial state have been explored
|
---|
[11806] | 276 | // eg. in the ant problem the canonical representation for ...lllA is ...rA
|
---|
| 277 | // even though all possible derivations (of limited length) of lllA have been visited we must not mark the state rA as done
|
---|
| 278 | private void MarkAsDone(string state) {
|
---|
| 279 | var s = CanonicalState(state);
|
---|
| 280 | // when the lengths of the canonical string and the original string are the same we also disable the actions
|
---|
| 281 | // always disable terminals
|
---|
| 282 | Debug.Assert(s.Length <= state.Length);
|
---|
| 283 | if (s.Length == state.Length || problem.Grammar.IsTerminal(state)) {
|
---|
| 284 | Debug.Assert(!done.Contains(s));
|
---|
| 285 | done.Add(s);
|
---|
| 286 | } else {
|
---|
| 287 | // for non-terminals where the canonical string is shorter than the original string we can only disable the canonical representation for all states in the same level
|
---|
| 288 | Debug.Assert(!done.Contains(s + state.Length));
|
---|
| 289 | done.Add(s + state.Length); // encode the original length of the state, states in the same level of the tree are treated as equivalent
|
---|
| 290 | }
|
---|
| 291 | }
|
---|
| 292 |
|
---|
| 293 | // symmetric to MarkDone
|
---|
| 294 | private bool Done(string state) {
|
---|
| 295 | var s = CanonicalState(state);
|
---|
| 296 | if (s.Length == state.Length || problem.Grammar.IsTerminal(state)) {
|
---|
| 297 | return done.Contains(s);
|
---|
| 298 | } else {
|
---|
| 299 | // it is not necessary to visit states if the canonical representation has already been fully explored
|
---|
| 300 | if (done.Contains(s)) return true;
|
---|
| 301 | if (done.Contains(s + state.Length)) return true;
|
---|
| 302 | for (int i = 1; i < state.Length; i++) {
|
---|
| 303 | if (done.Contains(s + i)) return true;
|
---|
| 304 | }
|
---|
| 305 | return false;
|
---|
| 306 | }
|
---|
| 307 | }
|
---|
| 308 |
|
---|
| 309 | private string CanonicalState(string state) {
|
---|
| 310 | if (useCanonicalPhrases) {
|
---|
[11799] | 311 | return problem.CanonicalRepresentation(state);
|
---|
[11792] | 312 | } else
|
---|
[11793] | 313 | return state;
|
---|
[11770] | 314 | }
|
---|
| 315 | }
|
---|
| 316 | }
|
---|