1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Diagnostics;
|
---|
4 | using System.Linq;
|
---|
5 | using System.Text;
|
---|
6 | using System.Threading.Tasks;
|
---|
7 | using HeuristicLab.Common;
|
---|
8 |
|
---|
9 | namespace HeuristicLab.Algorithms.Bandits.BanditPolicies {
|
---|
10 | // policy for k-armed bandit (see Auer et al. 2002)
|
---|
11 | // specific to Bernoulli distributed rewards
|
---|
12 | public class UCB1TunedPolicy : IBanditPolicy {
|
---|
13 |
|
---|
14 | public int SelectAction(Random random, IEnumerable<IBanditPolicyActionInfo> actionInfos) {
|
---|
15 | var myActionInfos = actionInfos.OfType<MeanAndVariancePolicyActionInfo>();
|
---|
16 |
|
---|
17 | int totalTries = myActionInfos.Sum(a => a.Tries);
|
---|
18 |
|
---|
19 | int aIdx = -1;
|
---|
20 | double bestQ = double.NegativeInfinity;
|
---|
21 | var bestActions = new List<int>();
|
---|
22 | foreach (var aInfo in myActionInfos) {
|
---|
23 | aIdx++;
|
---|
24 | double q;
|
---|
25 | if (aInfo.Tries == 0) {
|
---|
26 | q = double.PositiveInfinity;
|
---|
27 | } else {
|
---|
28 | var sumReward = aInfo.SumReward;
|
---|
29 | var tries = aInfo.Tries;
|
---|
30 |
|
---|
31 | //var avgReward = aInfo.MaxReward;
|
---|
32 | var avgReward = sumReward / tries;
|
---|
33 | q = avgReward + Math.Sqrt((Math.Log(totalTries) / tries) * Math.Min(1.0 / 4, V(aInfo, totalTries)));
|
---|
34 | // 1/4 is upper bound of bernoulli distributed variable
|
---|
35 | }
|
---|
36 | if (q > bestQ) {
|
---|
37 | bestQ = q;
|
---|
38 | bestActions.Clear();
|
---|
39 | bestActions.Add(aIdx);
|
---|
40 | } else if (q.IsAlmost(bestQ)) {
|
---|
41 | bestActions.Add(aIdx);
|
---|
42 | }
|
---|
43 | }
|
---|
44 | Debug.Assert(bestActions.Any());
|
---|
45 |
|
---|
46 | return bestActions.SelectRandom(random);
|
---|
47 | }
|
---|
48 |
|
---|
49 | public IBanditPolicyActionInfo CreateActionInfo() {
|
---|
50 | return new MeanAndVariancePolicyActionInfo();
|
---|
51 | }
|
---|
52 |
|
---|
53 | private double V(MeanAndVariancePolicyActionInfo actionInfo, int totalTries) {
|
---|
54 | var s = actionInfo.Tries;
|
---|
55 | return actionInfo.RewardVariance + Math.Sqrt(2 * Math.Log(totalTries) / s);
|
---|
56 | }
|
---|
57 |
|
---|
58 | public override string ToString() {
|
---|
59 | return "UCB1TunedPolicy";
|
---|
60 | }
|
---|
61 | }
|
---|
62 | }
|
---|