[12893] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.ComponentModel;
|
---|
| 4 | using System.Diagnostics;
|
---|
| 5 | using System.Linq;
|
---|
| 6 | using System.Text;
|
---|
| 7 | using System.Threading.Tasks;
|
---|
| 8 | using HeuristicLab.Common;
|
---|
| 9 |
|
---|
| 10 | namespace HeuristicLab.Algorithms.Bandits.BanditPolicies {
|
---|
| 11 | // Reference: Cicirello and Smith, The Max K-armed Bandit: A New Model of Exploration Applied to Search Heuristic Selection, AAAI 2005
|
---|
| 12 | // uses exponentially decreasing cooling schedule
|
---|
| 13 | public class BoltzmannExplorationWithCoolingPolicy : IBanditPolicy {
|
---|
| 14 | private readonly double beta;
|
---|
| 15 |
|
---|
| 16 | public BoltzmannExplorationWithCoolingPolicy(double beta) {
|
---|
| 17 | if (beta < 0) throw new ArgumentException();
|
---|
| 18 | this.beta = beta;
|
---|
| 19 | }
|
---|
| 20 | public int SelectAction(Random random, IEnumerable<IBanditPolicyActionInfo> actionInfos) {
|
---|
| 21 | Debug.Assert(actionInfos.Any());
|
---|
| 22 |
|
---|
| 23 | // select best
|
---|
| 24 | var myActionInfos = actionInfos.OfType<DefaultPolicyActionInfo>();
|
---|
| 25 |
|
---|
| 26 | // try any of the untries actions randomly
|
---|
| 27 | // for RoyalSequence it is much better to select the actions in the order of occurrence (all terminal alternatives first)
|
---|
| 28 | if (myActionInfos.Any(aInfo => aInfo.Tries == 0)) {
|
---|
| 29 | return myActionInfos
|
---|
| 30 | .Select((aInfo, idx) => new { aInfo, idx })
|
---|
| 31 | .Where(p => p.aInfo.Tries == 0)
|
---|
| 32 | .SelectRandom(random).idx;
|
---|
| 33 | }
|
---|
| 34 |
|
---|
| 35 | var totalTries = myActionInfos.Sum(i => i.Tries);
|
---|
| 36 | if (totalTries > 10000) {
|
---|
| 37 | // take best arm
|
---|
| 38 | return myActionInfos
|
---|
| 39 | .Select((aInfo, idx) => new { aInfo, idx })
|
---|
| 40 | .OrderByDescending(t => t.aInfo.MaxReward)
|
---|
| 41 | .First().idx;
|
---|
| 42 | }
|
---|
| 43 | var w = from aInfo in myActionInfos
|
---|
| 44 | let q = aInfo.MaxReward // this should be an estimator for the expected maximum of the distribution
|
---|
| 45 | select Math.Exp(beta * q / Math.Exp(-totalTries / 2000.0));
|
---|
| 46 |
|
---|
| 47 | var bestAction = Enumerable.Range(0, myActionInfos.Count()).SampleProportional(random, w);
|
---|
| 48 | Debug.Assert(bestAction >= 0);
|
---|
| 49 | return bestAction;
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | public IBanditPolicyActionInfo CreateActionInfo() {
|
---|
| 53 | return new DefaultPolicyActionInfo();
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public override string ToString() {
|
---|
| 57 | return string.Format("BoltzmannExplorationWithCoolingPolicy({0:F2})", beta);
|
---|
| 58 | }
|
---|
| 59 | }
|
---|
| 60 | }
|
---|