[13865] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using HeuristicLab.Common;
|
---|
| 5 | using HeuristicLab.Core;
|
---|
| 6 | using HeuristicLab.Data;
|
---|
| 7 | using HeuristicLab.Optimization;
|
---|
| 8 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 9 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 10 |
|
---|
| 11 | namespace HeuristicLab.Problems.GeneticProgramming.GlucosePrediction {
|
---|
| 12 | [StorableClass]
|
---|
| 13 | [Item("Solution", "")]
|
---|
| 14 | // almost a complete copy of RegressionSolutionBase and RegressionSolution
|
---|
| 15 | // only change: skipping missing values in the target
|
---|
| 16 | public sealed class Solution : DataAnalysisSolution, IRegressionSolution {
|
---|
| 17 | private const string TrainingMeanSquaredErrorResultName = "Mean squared error (training)";
|
---|
| 18 | private const string TestMeanSquaredErrorResultName = "Mean squared error (test)";
|
---|
| 19 | private const string TrainingMeanAbsoluteErrorResultName = "Mean absolute error (training)";
|
---|
| 20 | private const string TestMeanAbsoluteErrorResultName = "Mean absolute error (test)";
|
---|
| 21 | private const string TrainingSquaredCorrelationResultName = "Pearson's R² (training)";
|
---|
| 22 | private const string TestSquaredCorrelationResultName = "Pearson's R² (test)";
|
---|
| 23 | private const string TrainingRelativeErrorResultName = "Average relative error (training)";
|
---|
| 24 | private const string TestRelativeErrorResultName = "Average relative error (test)";
|
---|
| 25 | private const string TrainingNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (training)";
|
---|
| 26 | private const string TestNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (test)";
|
---|
| 27 | private const string TrainingRootMeanSquaredErrorResultName = "Root mean squared error (training)";
|
---|
| 28 | private const string TestRootMeanSquaredErrorResultName = "Root mean squared error (test)";
|
---|
| 29 |
|
---|
| 30 | private const string TrainingMeanSquaredErrorResultDescription = "Mean of squared errors of the model on the training partition";
|
---|
| 31 | private const string TestMeanSquaredErrorResultDescription = "Mean of squared errors of the model on the test partition";
|
---|
| 32 | private const string TrainingMeanAbsoluteErrorResultDescription = "Mean of absolute errors of the model on the training partition";
|
---|
| 33 | private const string TestMeanAbsoluteErrorResultDescription = "Mean of absolute errors of the model on the test partition";
|
---|
| 34 | private const string TrainingSquaredCorrelationResultDescription = "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition";
|
---|
| 35 | private const string TestSquaredCorrelationResultDescription = "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition";
|
---|
| 36 | private const string TrainingRelativeErrorResultDescription = "Average of the relative errors of the model output and the actual values on the training partition";
|
---|
| 37 | private const string TestRelativeErrorResultDescription = "Average of the relative errors of the model output and the actual values on the test partition";
|
---|
| 38 | private const string TrainingNormalizedMeanSquaredErrorResultDescription = "Normalized mean of squared errors of the model on the training partition";
|
---|
| 39 | private const string TestNormalizedMeanSquaredErrorResultDescription = "Normalized mean of squared errors of the model on the test partition";
|
---|
| 40 | private const string TrainingRootMeanSquaredErrorResultDescription = "Root mean of squared errors of the model on the training partition";
|
---|
| 41 | private const string TestRootMeanSquaredErrorResultDescription = "Root mean of squared errors of the model on the test partition";
|
---|
| 42 |
|
---|
[14313] | 43 | [StorableConstructor]
|
---|
[13865] | 44 | public Solution(bool deserializing)
|
---|
| 45 | : base(deserializing) {
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public Solution(Solution original, Cloner cloner)
|
---|
| 49 | : base(original, cloner) {
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | public Solution(IRegressionModel model, IRegressionProblemData problemData)
|
---|
| 53 | : base(model, problemData) {
|
---|
| 54 | Add(new Result(TrainingMeanSquaredErrorResultName, TrainingMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 55 | Add(new Result(TestMeanSquaredErrorResultName, TestMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 56 | Add(new Result(TrainingMeanAbsoluteErrorResultName, TrainingMeanAbsoluteErrorResultDescription, new DoubleValue()));
|
---|
| 57 | Add(new Result(TestMeanAbsoluteErrorResultName, TestMeanAbsoluteErrorResultDescription, new DoubleValue()));
|
---|
| 58 | Add(new Result(TrainingSquaredCorrelationResultName, TrainingSquaredCorrelationResultDescription, new DoubleValue()));
|
---|
| 59 | Add(new Result(TestSquaredCorrelationResultName, TestSquaredCorrelationResultDescription, new DoubleValue()));
|
---|
| 60 | Add(new Result(TrainingRelativeErrorResultName, TrainingRelativeErrorResultDescription, new PercentValue()));
|
---|
| 61 | Add(new Result(TestRelativeErrorResultName, TestRelativeErrorResultDescription, new PercentValue()));
|
---|
| 62 | Add(new Result(TrainingNormalizedMeanSquaredErrorResultName, TrainingNormalizedMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 63 | Add(new Result(TestNormalizedMeanSquaredErrorResultName, TestNormalizedMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 64 | Add(new Result(TrainingRootMeanSquaredErrorResultName, TrainingRootMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 65 | Add(new Result(TestRootMeanSquaredErrorResultName, TestRootMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 66 | CalculateRegressionResults();
|
---|
| 67 | }
|
---|
| 68 |
|
---|
[14317] | 69 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 70 | return new Solution(this, cloner);
|
---|
| 71 | }
|
---|
| 72 |
|
---|
[13865] | 73 | protected override void RecalculateResults() {
|
---|
| 74 | CalculateRegressionResults();
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | private void CalculateRegressionResults() {
|
---|
| 78 | IEnumerable<double> estimatedTrainingValues = EstimatedTrainingValues; // cache values
|
---|
| 79 | IEnumerable<double> originalTrainingValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices);
|
---|
| 80 | IEnumerable<double> estimatedTestValues = EstimatedTestValues; // cache values
|
---|
| 81 | IEnumerable<double> originalTestValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices);
|
---|
| 82 |
|
---|
| 83 | // only take predictions for which the target is not NaN
|
---|
| 84 | var selectedTrainingTuples = originalTrainingValues.Zip(estimatedTrainingValues, Tuple.Create).Where(t => !double.IsNaN(t.Item1)).ToArray();
|
---|
| 85 | originalTrainingValues = selectedTrainingTuples.Select(t => t.Item1);
|
---|
| 86 | estimatedTrainingValues = selectedTrainingTuples.Select(t => t.Item2);
|
---|
| 87 |
|
---|
| 88 | var selectedTestTuples = originalTestValues.Zip(estimatedTestValues, Tuple.Create).Where(t => !double.IsNaN(t.Item1)).ToArray();
|
---|
| 89 | originalTestValues = selectedTestTuples.Select(t => t.Item1);
|
---|
| 90 | estimatedTestValues = selectedTestTuples.Select(t => t.Item2);
|
---|
| 91 |
|
---|
| 92 | OnlineCalculatorError errorState;
|
---|
| 93 | double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 94 | TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
|
---|
| 95 | double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 96 | TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;
|
---|
| 97 |
|
---|
| 98 | double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 99 | TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
|
---|
| 100 | double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 101 | TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN;
|
---|
| 102 |
|
---|
| 103 | double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 104 | TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR * trainingR : double.NaN;
|
---|
| 105 | double testR = OnlinePearsonsRCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 106 | TestRSquared = errorState == OnlineCalculatorError.None ? testR * testR : double.NaN;
|
---|
| 107 |
|
---|
| 108 | double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 109 | TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
|
---|
| 110 | double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 111 | TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
|
---|
| 112 |
|
---|
| 113 | double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 114 | TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
|
---|
| 115 | double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 116 | TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN;
|
---|
| 117 |
|
---|
| 118 | TrainingRootMeanSquaredError = Math.Sqrt(TrainingMeanSquaredError);
|
---|
| 119 | TestRootMeanSquaredError = Math.Sqrt(TestMeanSquaredError);
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 | public new IRegressionModel Model {
|
---|
| 123 | get { return (IRegressionModel)base.Model; }
|
---|
| 124 | private set {
|
---|
| 125 | base.Model = value;
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 | public new IRegressionProblemData ProblemData {
|
---|
| 129 | get { return (IRegressionProblemData)base.ProblemData; }
|
---|
| 130 | set {
|
---|
| 131 | base.ProblemData = value;
|
---|
| 132 | }
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | public IEnumerable<double> EstimatedValues {
|
---|
| 136 | get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
| 137 | }
|
---|
| 138 | public IEnumerable<double> EstimatedTrainingValues {
|
---|
[14311] | 139 | get {
|
---|
| 140 | var all = EstimatedValues.ToArray();
|
---|
| 141 | return ProblemData.TrainingIndices.Select(r => all[r]);
|
---|
| 142 | }
|
---|
[13865] | 143 | }
|
---|
| 144 | public IEnumerable<double> EstimatedTestValues {
|
---|
[14311] | 145 | get {
|
---|
| 146 | var all = EstimatedValues.ToArray();
|
---|
| 147 | return ProblemData.TestIndices.Select(r => all[r]);
|
---|
| 148 | }
|
---|
[13865] | 149 | }
|
---|
| 150 |
|
---|
| 151 | public IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
[14311] | 152 | var all = Model.GetEstimatedValues(ProblemData.Dataset, ProblemData.AllIndices).ToArray();
|
---|
| 153 | return rows.Select(r => all[r]);
|
---|
[13865] | 154 | }
|
---|
| 155 |
|
---|
| 156 |
|
---|
| 157 | #region Results
|
---|
| 158 | public double TrainingMeanSquaredError {
|
---|
| 159 | get { return ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value; }
|
---|
| 160 | private set { ((DoubleValue)this[TrainingMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 161 | }
|
---|
| 162 | public double TestMeanSquaredError {
|
---|
| 163 | get { return ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value; }
|
---|
| 164 | private set { ((DoubleValue)this[TestMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 165 | }
|
---|
| 166 | public double TrainingMeanAbsoluteError {
|
---|
| 167 | get { return ((DoubleValue)this[TrainingMeanAbsoluteErrorResultName].Value).Value; }
|
---|
| 168 | private set { ((DoubleValue)this[TrainingMeanAbsoluteErrorResultName].Value).Value = value; }
|
---|
| 169 | }
|
---|
| 170 | public double TestMeanAbsoluteError {
|
---|
| 171 | get { return ((DoubleValue)this[TestMeanAbsoluteErrorResultName].Value).Value; }
|
---|
| 172 | private set { ((DoubleValue)this[TestMeanAbsoluteErrorResultName].Value).Value = value; }
|
---|
| 173 | }
|
---|
| 174 | public double TrainingRSquared {
|
---|
| 175 | get { return ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value; }
|
---|
| 176 | private set { ((DoubleValue)this[TrainingSquaredCorrelationResultName].Value).Value = value; }
|
---|
| 177 | }
|
---|
| 178 | public double TestRSquared {
|
---|
| 179 | get { return ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value; }
|
---|
| 180 | private set { ((DoubleValue)this[TestSquaredCorrelationResultName].Value).Value = value; }
|
---|
| 181 | }
|
---|
| 182 | public double TrainingRelativeError {
|
---|
| 183 | get { return ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value; }
|
---|
| 184 | private set { ((DoubleValue)this[TrainingRelativeErrorResultName].Value).Value = value; }
|
---|
| 185 | }
|
---|
| 186 | public double TestRelativeError {
|
---|
| 187 | get { return ((DoubleValue)this[TestRelativeErrorResultName].Value).Value; }
|
---|
| 188 | private set { ((DoubleValue)this[TestRelativeErrorResultName].Value).Value = value; }
|
---|
| 189 | }
|
---|
| 190 | public double TrainingNormalizedMeanSquaredError {
|
---|
| 191 | get { return ((DoubleValue)this[TrainingNormalizedMeanSquaredErrorResultName].Value).Value; }
|
---|
| 192 | private set { ((DoubleValue)this[TrainingNormalizedMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 193 | }
|
---|
| 194 | public double TestNormalizedMeanSquaredError {
|
---|
| 195 | get { return ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value; }
|
---|
| 196 | private set { ((DoubleValue)this[TestNormalizedMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 197 | }
|
---|
| 198 | public double TrainingRootMeanSquaredError {
|
---|
| 199 | get { return ((DoubleValue)this[TrainingRootMeanSquaredErrorResultName].Value).Value; }
|
---|
| 200 | private set { ((DoubleValue)this[TrainingRootMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 201 | }
|
---|
| 202 | public double TestRootMeanSquaredError {
|
---|
| 203 | get { return ((DoubleValue)this[TestRootMeanSquaredErrorResultName].Value).Value; }
|
---|
| 204 | private set { ((DoubleValue)this[TestRootMeanSquaredErrorResultName].Value).Value = value; }
|
---|
| 205 | }
|
---|
| 206 |
|
---|
| 207 |
|
---|
| 208 | #endregion
|
---|
| 209 |
|
---|
| 210 | }
|
---|
| 211 | }
|
---|