1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
32 | using HeuristicLab.Problems.Instances;
|
---|
33 |
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.GeneticProgramming.GlucosePrediction {
|
---|
36 | [Item("Blood Glucose Forecast", "See MedGEC Workshop at GECCO 2016")]
|
---|
37 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 999)]
|
---|
38 | [StorableClass]
|
---|
39 | public sealed class Problem : SymbolicExpressionTreeProblem, IRegressionProblem, IProblemInstanceConsumer<IRegressionProblemData>, IProblemInstanceExporter<IRegressionProblemData> {
|
---|
40 |
|
---|
41 | #region parameter names
|
---|
42 | private const string ProblemDataParameterName = "ProblemData";
|
---|
43 | #endregion
|
---|
44 |
|
---|
45 | #region Parameter Properties
|
---|
46 | IParameter IDataAnalysisProblem.ProblemDataParameter { get { return ProblemDataParameter; } }
|
---|
47 |
|
---|
48 | public IValueParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
49 | get { return (IValueParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
50 | }
|
---|
51 | #endregion
|
---|
52 |
|
---|
53 | #region Properties
|
---|
54 | public IRegressionProblemData ProblemData {
|
---|
55 | get { return ProblemDataParameter.Value; }
|
---|
56 | set { ProblemDataParameter.Value = value; }
|
---|
57 | }
|
---|
58 | IDataAnalysisProblemData IDataAnalysisProblem.ProblemData { get { return ProblemData; } }
|
---|
59 | #endregion
|
---|
60 |
|
---|
61 | public event EventHandler ProblemDataChanged;
|
---|
62 |
|
---|
63 | public override bool Maximization {
|
---|
64 | get { return false; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | #region item cloning and persistence
|
---|
68 | // persistence
|
---|
69 | [StorableConstructor]
|
---|
70 | private Problem(bool deserializing) : base(deserializing) { }
|
---|
71 | [StorableHook(HookType.AfterDeserialization)]
|
---|
72 | private void AfterDeserialization() {
|
---|
73 | RegisterEventHandlers();
|
---|
74 | }
|
---|
75 |
|
---|
76 | // cloning
|
---|
77 | private Problem(Problem original, Cloner cloner)
|
---|
78 | : base(original, cloner) {
|
---|
79 | RegisterEventHandlers();
|
---|
80 | }
|
---|
81 | public override IDeepCloneable Clone(Cloner cloner) { return new Problem(this, cloner); }
|
---|
82 | #endregion
|
---|
83 |
|
---|
84 | public Problem()
|
---|
85 | : base() {
|
---|
86 | Parameters.Add(new ValueParameter<IRegressionProblemData>(ProblemDataParameterName, "The data for the glucose prediction problem", new RegressionProblemData()));
|
---|
87 |
|
---|
88 | var g = new SimpleSymbolicExpressionGrammar(); // empty grammar is replaced in UpdateGrammar()
|
---|
89 | base.Encoding = new SymbolicExpressionTreeEncoding(g, 100, 17);
|
---|
90 |
|
---|
91 | UpdateGrammar();
|
---|
92 | RegisterEventHandlers();
|
---|
93 | }
|
---|
94 |
|
---|
95 |
|
---|
96 | public override double Evaluate(ISymbolicExpressionTree tree, IRandom random) {
|
---|
97 | var problemData = ProblemData;
|
---|
98 | var rows = problemData.TrainingIndices.ToArray();
|
---|
99 | var target = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
100 | var predicted = Interpreter.Apply(tree.Root.GetSubtree(0).GetSubtree(0), problemData.Dataset, rows);
|
---|
101 |
|
---|
102 | // only take predictions for which the target is not NaN
|
---|
103 | var selectedTuples = target.Zip(predicted, Tuple.Create).Where(t => !double.IsNaN(t.Item1)).ToArray();
|
---|
104 | target = selectedTuples.Select(t => t.Item1);
|
---|
105 | predicted = selectedTuples.Select(t => t.Item2);
|
---|
106 |
|
---|
107 | OnlineCalculatorError errorState;
|
---|
108 | var mse = OnlineMeanSquaredErrorCalculator.Calculate(target, predicted, out errorState);
|
---|
109 | if (errorState != OnlineCalculatorError.None) mse = 1E6;
|
---|
110 | return mse;
|
---|
111 | }
|
---|
112 |
|
---|
113 | public override void Analyze(ISymbolicExpressionTree[] trees, double[] qualities, ResultCollection results, IRandom random) {
|
---|
114 | base.Analyze(trees, qualities, results, random);
|
---|
115 |
|
---|
116 | if (!results.ContainsKey("Solution")) {
|
---|
117 | results.Add(new Result("Solution", typeof(IRegressionSolution)));
|
---|
118 | }
|
---|
119 |
|
---|
120 | var bestTree = trees.First();
|
---|
121 | var bestQuality = qualities.First();
|
---|
122 | for (int i = 1; i < trees.Length; i++) {
|
---|
123 | if (qualities[i] < bestQuality) {
|
---|
124 | bestQuality = qualities[i];
|
---|
125 | bestTree = trees[i];
|
---|
126 | }
|
---|
127 | }
|
---|
128 |
|
---|
129 | var clonedProblemData = (IRegressionProblemData)ProblemData.Clone();
|
---|
130 | var model = new Model(clonedProblemData, (ISymbolicExpressionTree)bestTree.Clone());
|
---|
131 | results["Solution"].Value = model.CreateRegressionSolution(clonedProblemData);
|
---|
132 | }
|
---|
133 |
|
---|
134 | #region events
|
---|
135 | private void RegisterEventHandlers() {
|
---|
136 | ProblemDataParameter.ValueChanged += new EventHandler(ProblemDataParameter_ValueChanged);
|
---|
137 | if (ProblemDataParameter.Value != null) ProblemDataParameter.Value.Changed += new EventHandler(ProblemData_Changed);
|
---|
138 | }
|
---|
139 |
|
---|
140 | private void ProblemDataParameter_ValueChanged(object sender, EventArgs e) {
|
---|
141 | ProblemDataParameter.Value.Changed += new EventHandler(ProblemData_Changed);
|
---|
142 | OnProblemDataChanged();
|
---|
143 | OnReset();
|
---|
144 | }
|
---|
145 |
|
---|
146 | private void ProblemData_Changed(object sender, EventArgs e) {
|
---|
147 | OnReset();
|
---|
148 | }
|
---|
149 |
|
---|
150 | private void OnProblemDataChanged() {
|
---|
151 | UpdateGrammar();
|
---|
152 |
|
---|
153 | var handler = ProblemDataChanged;
|
---|
154 | if (handler != null) handler(this, EventArgs.Empty);
|
---|
155 | }
|
---|
156 |
|
---|
157 | private void UpdateGrammar() {
|
---|
158 | // whenever ProblemData is changed we create a new grammar with the necessary symbols
|
---|
159 | var g = new Grammar();
|
---|
160 | Encoding.Grammar = g;
|
---|
161 | }
|
---|
162 | #endregion
|
---|
163 |
|
---|
164 | #region Import & Export
|
---|
165 | public void Load(IRegressionProblemData data) {
|
---|
166 | Name = data.Name;
|
---|
167 | Description = data.Description;
|
---|
168 | ProblemData = data;
|
---|
169 | }
|
---|
170 |
|
---|
171 | public IRegressionProblemData Export() {
|
---|
172 | return ProblemData;
|
---|
173 | }
|
---|
174 | #endregion
|
---|
175 | }
|
---|
176 | }
|
---|