[13865] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[14310] | 23 | using System.Collections;
|
---|
[13865] | 24 | using System.Collections.Generic;
|
---|
| 25 | using System.Linq;
|
---|
[14310] | 26 | using HeuristicLab.Analysis;
|
---|
[13865] | 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[14311] | 34 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
[13865] | 35 | using HeuristicLab.Problems.Instances;
|
---|
| 36 |
|
---|
| 37 |
|
---|
| 38 | namespace HeuristicLab.Problems.GeneticProgramming.GlucosePrediction {
|
---|
| 39 | [Item("Blood Glucose Forecast", "See MedGEC Workshop at GECCO 2016")]
|
---|
| 40 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 999)]
|
---|
| 41 | [StorableClass]
|
---|
| 42 | public sealed class Problem : SymbolicExpressionTreeProblem, IRegressionProblem, IProblemInstanceConsumer<IRegressionProblemData>, IProblemInstanceExporter<IRegressionProblemData> {
|
---|
| 43 |
|
---|
| 44 | #region parameter names
|
---|
| 45 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 46 | #endregion
|
---|
| 47 |
|
---|
| 48 | #region Parameter Properties
|
---|
| 49 | IParameter IDataAnalysisProblem.ProblemDataParameter { get { return ProblemDataParameter; } }
|
---|
| 50 |
|
---|
| 51 | public IValueParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
| 52 | get { return (IValueParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 53 | }
|
---|
| 54 | #endregion
|
---|
| 55 |
|
---|
| 56 | #region Properties
|
---|
| 57 | public IRegressionProblemData ProblemData {
|
---|
| 58 | get { return ProblemDataParameter.Value; }
|
---|
| 59 | set { ProblemDataParameter.Value = value; }
|
---|
| 60 | }
|
---|
| 61 | IDataAnalysisProblemData IDataAnalysisProblem.ProblemData { get { return ProblemData; } }
|
---|
| 62 | #endregion
|
---|
| 63 |
|
---|
| 64 | public event EventHandler ProblemDataChanged;
|
---|
| 65 |
|
---|
| 66 | public override bool Maximization {
|
---|
[14310] | 67 | get { return true; }
|
---|
[13865] | 68 | }
|
---|
| 69 |
|
---|
| 70 | #region item cloning and persistence
|
---|
| 71 | // persistence
|
---|
| 72 | [StorableConstructor]
|
---|
| 73 | private Problem(bool deserializing) : base(deserializing) { }
|
---|
| 74 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 75 | private void AfterDeserialization() {
|
---|
| 76 | RegisterEventHandlers();
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | // cloning
|
---|
| 80 | private Problem(Problem original, Cloner cloner)
|
---|
| 81 | : base(original, cloner) {
|
---|
| 82 | RegisterEventHandlers();
|
---|
| 83 | }
|
---|
| 84 | public override IDeepCloneable Clone(Cloner cloner) { return new Problem(this, cloner); }
|
---|
| 85 | #endregion
|
---|
| 86 |
|
---|
| 87 | public Problem()
|
---|
| 88 | : base() {
|
---|
| 89 | Parameters.Add(new ValueParameter<IRegressionProblemData>(ProblemDataParameterName, "The data for the glucose prediction problem", new RegressionProblemData()));
|
---|
| 90 |
|
---|
| 91 | var g = new SimpleSymbolicExpressionGrammar(); // empty grammar is replaced in UpdateGrammar()
|
---|
| 92 | base.Encoding = new SymbolicExpressionTreeEncoding(g, 100, 17);
|
---|
| 93 |
|
---|
| 94 | UpdateGrammar();
|
---|
| 95 | RegisterEventHandlers();
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 |
|
---|
| 99 | public override double Evaluate(ISymbolicExpressionTree tree, IRandom random) {
|
---|
| 100 | var problemData = ProblemData;
|
---|
[14311] | 101 | var target = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
|
---|
| 102 | var allPredicted = Interpreter.Apply(tree.Root.GetSubtree(0).GetSubtree(0), problemData.Dataset, problemData.AllIndices).ToArray();
|
---|
| 103 | var predicted = problemData.TrainingIndices.Select(r => allPredicted[r]);
|
---|
[13865] | 104 |
|
---|
[14311] | 105 | // var predicted1 = Interpreter.Apply(tree.Root.GetSubtree(0).GetSubtree(0).GetSubtree(1), problemData.Dataset, rows);
|
---|
| 106 | // var predicted2 = Interpreter.Apply(tree.Root.GetSubtree(0).GetSubtree(0).GetSubtree(2), problemData.Dataset, rows);
|
---|
| 107 |
|
---|
| 108 | var pred0_rsq = Rsq(predicted, target);
|
---|
| 109 | // var pred1_rsq = Rsq(predicted1, target);
|
---|
| 110 | // var pred2_rsq = Rsq(predicted2, target);
|
---|
| 111 | return pred0_rsq; // + pred1_rsq + pred2_rsq;
|
---|
[14310] | 112 | }
|
---|
| 113 |
|
---|
| 114 | private double Rsq(IEnumerable<double> predicted, IEnumerable<double> target) {
|
---|
[13865] | 115 | // only take predictions for which the target is not NaN
|
---|
| 116 | var selectedTuples = target.Zip(predicted, Tuple.Create).Where(t => !double.IsNaN(t.Item1)).ToArray();
|
---|
| 117 | target = selectedTuples.Select(t => t.Item1);
|
---|
| 118 | predicted = selectedTuples.Select(t => t.Item2);
|
---|
| 119 |
|
---|
| 120 | OnlineCalculatorError errorState;
|
---|
[14310] | 121 | var r = OnlinePearsonsRCalculator.Calculate(target, predicted, out errorState);
|
---|
| 122 | if (errorState != OnlineCalculatorError.None) r = 0;
|
---|
| 123 | return r * r;
|
---|
[13865] | 124 | }
|
---|
| 125 |
|
---|
[14310] | 126 | public override void Analyze(ISymbolicExpressionTree[] trees, double[] qualities, ResultCollection results,
|
---|
| 127 | IRandom random) {
|
---|
[13865] | 128 | base.Analyze(trees, qualities, results, random);
|
---|
| 129 |
|
---|
| 130 | if (!results.ContainsKey("Solution")) {
|
---|
| 131 | results.Add(new Result("Solution", typeof(IRegressionSolution)));
|
---|
| 132 | }
|
---|
[14311] | 133 | if (!results.ContainsKey("ScaledTree")) {
|
---|
| 134 | results.Add(new Result("ScaledTree", typeof(ISymbolicExpressionTree)));
|
---|
[14310] | 135 | }
|
---|
[14311] | 136 | // if (!results.ContainsKey("Terms")) {
|
---|
| 137 | // results.Add(new Result("Terms", typeof(DataTable)));
|
---|
| 138 | // }
|
---|
[13865] | 139 |
|
---|
| 140 | var bestTree = trees.First();
|
---|
| 141 | var bestQuality = qualities.First();
|
---|
| 142 | for (int i = 1; i < trees.Length; i++) {
|
---|
[14310] | 143 | if (qualities[i] > bestQuality) {
|
---|
[13865] | 144 | bestQuality = qualities[i];
|
---|
| 145 | bestTree = trees[i];
|
---|
| 146 | }
|
---|
| 147 | }
|
---|
| 148 |
|
---|
[14311] | 149 | bestTree = (ISymbolicExpressionTree)bestTree.Clone();
|
---|
| 150 | var expressionNode = bestTree.Root.GetSubtree(0).GetSubtree(0);
|
---|
| 151 | // scale
|
---|
[14310] | 152 |
|
---|
[14311] | 153 | var problemData = ProblemData;
|
---|
| 154 | var rows = problemData.AllIndices.ToArray();
|
---|
| 155 | var target = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
|
---|
| 156 | var predicted =
|
---|
| 157 | Interpreter.Apply(expressionNode.GetSubtree(0), problemData.Dataset, rows)
|
---|
[14310] | 158 | .ToArray();
|
---|
| 159 |
|
---|
[14311] | 160 | var filteredPredicted = rows.Where(r => !double.IsNaN(target[r])).Select(r => predicted[r]).ToArray();
|
---|
| 161 | var filteredTarget = target.Where(t => !double.IsNaN(t)).ToArray();
|
---|
| 162 | OnlineCalculatorError error;
|
---|
| 163 | double alpha;
|
---|
| 164 | double beta;
|
---|
| 165 | OnlineLinearScalingParameterCalculator.Calculate(filteredPredicted, filteredTarget, out alpha, out beta, out error);
|
---|
[14310] | 166 |
|
---|
[14311] | 167 | var prod = new SimpleSymbol("*", "*", 2, 2).CreateTreeNode();
|
---|
| 168 | var sum = new SimpleSymbol("+", "+", 2, 2).CreateTreeNode();
|
---|
| 169 | var constAlpha = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
| 170 | constAlpha.Value = alpha;
|
---|
| 171 | var constBeta = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
| 172 | constBeta.Value = beta;
|
---|
[14310] | 173 |
|
---|
[14311] | 174 | var originalTree = expressionNode.GetSubtree(0);
|
---|
| 175 | expressionNode.RemoveSubtree(0);
|
---|
| 176 | expressionNode.AddSubtree(sum);
|
---|
| 177 | sum.AddSubtree(prod);
|
---|
| 178 | sum.AddSubtree(constAlpha);
|
---|
| 179 | prod.AddSubtree(originalTree);
|
---|
| 180 | prod.AddSubtree(constBeta);
|
---|
[14310] | 181 |
|
---|
[14311] | 182 | var model = new Model(bestTree, problemData.TargetVariable, problemData.AllowedInputVariables.ToArray());
|
---|
| 183 | model.Name = "Scaled Model";
|
---|
| 184 | model.Description = "Scaled Model";
|
---|
| 185 | results["Solution"].Value = model.CreateRegressionSolution(problemData);
|
---|
| 186 | results["ScaledTree"].Value = bestTree;
|
---|
[14310] | 187 |
|
---|
[13865] | 188 | }
|
---|
| 189 |
|
---|
| 190 | #region events
|
---|
| 191 | private void RegisterEventHandlers() {
|
---|
| 192 | ProblemDataParameter.ValueChanged += new EventHandler(ProblemDataParameter_ValueChanged);
|
---|
| 193 | if (ProblemDataParameter.Value != null) ProblemDataParameter.Value.Changed += new EventHandler(ProblemData_Changed);
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | private void ProblemDataParameter_ValueChanged(object sender, EventArgs e) {
|
---|
| 197 | ProblemDataParameter.Value.Changed += new EventHandler(ProblemData_Changed);
|
---|
| 198 | OnProblemDataChanged();
|
---|
| 199 | OnReset();
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | private void ProblemData_Changed(object sender, EventArgs e) {
|
---|
| 203 | OnReset();
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | private void OnProblemDataChanged() {
|
---|
| 207 | UpdateGrammar();
|
---|
| 208 |
|
---|
| 209 | var handler = ProblemDataChanged;
|
---|
| 210 | if (handler != null) handler(this, EventArgs.Empty);
|
---|
| 211 | }
|
---|
| 212 |
|
---|
| 213 | private void UpdateGrammar() {
|
---|
| 214 | // whenever ProblemData is changed we create a new grammar with the necessary symbols
|
---|
| 215 | var g = new Grammar();
|
---|
| 216 | Encoding.Grammar = g;
|
---|
| 217 | }
|
---|
| 218 | #endregion
|
---|
| 219 |
|
---|
| 220 | #region Import & Export
|
---|
| 221 | public void Load(IRegressionProblemData data) {
|
---|
| 222 | Name = data.Name;
|
---|
| 223 | Description = data.Description;
|
---|
| 224 | ProblemData = data;
|
---|
| 225 | }
|
---|
| 226 |
|
---|
| 227 | public IRegressionProblemData Export() {
|
---|
| 228 | return ProblemData;
|
---|
| 229 | }
|
---|
| 230 | #endregion
|
---|
| 231 | }
|
---|
| 232 | }
|
---|