[13865] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 32 | using HeuristicLab.Problems.Instances;
|
---|
| 33 |
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Problems.GeneticProgramming.GlucosePrediction {
|
---|
| 36 | [Item("Blood Glucose Forecast", "See MedGEC Workshop at GECCO 2016")]
|
---|
| 37 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 999)]
|
---|
| 38 | [StorableClass]
|
---|
| 39 | public sealed class Problem : SymbolicExpressionTreeProblem, IRegressionProblem, IProblemInstanceConsumer<IRegressionProblemData>, IProblemInstanceExporter<IRegressionProblemData> {
|
---|
| 40 |
|
---|
| 41 | #region parameter names
|
---|
| 42 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 43 | #endregion
|
---|
| 44 |
|
---|
| 45 | #region Parameter Properties
|
---|
| 46 | IParameter IDataAnalysisProblem.ProblemDataParameter { get { return ProblemDataParameter; } }
|
---|
| 47 |
|
---|
| 48 | public IValueParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
| 49 | get { return (IValueParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 50 | }
|
---|
| 51 | #endregion
|
---|
| 52 |
|
---|
| 53 | #region Properties
|
---|
| 54 | public IRegressionProblemData ProblemData {
|
---|
| 55 | get { return ProblemDataParameter.Value; }
|
---|
| 56 | set { ProblemDataParameter.Value = value; }
|
---|
| 57 | }
|
---|
| 58 | IDataAnalysisProblemData IDataAnalysisProblem.ProblemData { get { return ProblemData; } }
|
---|
| 59 | #endregion
|
---|
| 60 |
|
---|
| 61 | public event EventHandler ProblemDataChanged;
|
---|
| 62 |
|
---|
| 63 | public override bool Maximization {
|
---|
| 64 | get { return false; }
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | #region item cloning and persistence
|
---|
| 68 | // persistence
|
---|
| 69 | [StorableConstructor]
|
---|
| 70 | private Problem(bool deserializing) : base(deserializing) { }
|
---|
| 71 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 72 | private void AfterDeserialization() {
|
---|
| 73 | RegisterEventHandlers();
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | // cloning
|
---|
| 77 | private Problem(Problem original, Cloner cloner)
|
---|
| 78 | : base(original, cloner) {
|
---|
| 79 | RegisterEventHandlers();
|
---|
| 80 | }
|
---|
| 81 | public override IDeepCloneable Clone(Cloner cloner) { return new Problem(this, cloner); }
|
---|
| 82 | #endregion
|
---|
| 83 |
|
---|
| 84 | public Problem()
|
---|
| 85 | : base() {
|
---|
| 86 | Parameters.Add(new ValueParameter<IRegressionProblemData>(ProblemDataParameterName, "The data for the glucose prediction problem", new RegressionProblemData()));
|
---|
| 87 |
|
---|
| 88 | var g = new SimpleSymbolicExpressionGrammar(); // empty grammar is replaced in UpdateGrammar()
|
---|
| 89 | base.Encoding = new SymbolicExpressionTreeEncoding(g, 100, 17);
|
---|
| 90 |
|
---|
| 91 | UpdateGrammar();
|
---|
| 92 | RegisterEventHandlers();
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 |
|
---|
| 96 | public override double Evaluate(ISymbolicExpressionTree tree, IRandom random) {
|
---|
| 97 | var problemData = ProblemData;
|
---|
| 98 | var rows = problemData.TrainingIndices.ToArray();
|
---|
| 99 | var target = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 100 | var predicted = Interpreter.Apply(tree.Root.GetSubtree(0).GetSubtree(0), problemData.Dataset, rows);
|
---|
| 101 |
|
---|
| 102 | // only take predictions for which the target is not NaN
|
---|
| 103 | var selectedTuples = target.Zip(predicted, Tuple.Create).Where(t => !double.IsNaN(t.Item1)).ToArray();
|
---|
| 104 | target = selectedTuples.Select(t => t.Item1);
|
---|
| 105 | predicted = selectedTuples.Select(t => t.Item2);
|
---|
| 106 |
|
---|
| 107 | OnlineCalculatorError errorState;
|
---|
| 108 | var mse = OnlineMeanSquaredErrorCalculator.Calculate(target, predicted, out errorState);
|
---|
| 109 | if (errorState != OnlineCalculatorError.None) mse = 1E6;
|
---|
| 110 | return mse;
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | public override void Analyze(ISymbolicExpressionTree[] trees, double[] qualities, ResultCollection results, IRandom random) {
|
---|
| 114 | base.Analyze(trees, qualities, results, random);
|
---|
| 115 |
|
---|
| 116 | if (!results.ContainsKey("Solution")) {
|
---|
| 117 | results.Add(new Result("Solution", typeof(IRegressionSolution)));
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | var bestTree = trees.First();
|
---|
| 121 | var bestQuality = qualities.First();
|
---|
| 122 | for (int i = 1; i < trees.Length; i++) {
|
---|
| 123 | if (qualities[i] < bestQuality) {
|
---|
| 124 | bestQuality = qualities[i];
|
---|
| 125 | bestTree = trees[i];
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 |
|
---|
| 129 | var clonedProblemData = (IRegressionProblemData)ProblemData.Clone();
|
---|
| 130 | var model = new Model(clonedProblemData, (ISymbolicExpressionTree)bestTree.Clone());
|
---|
| 131 | results["Solution"].Value = model.CreateRegressionSolution(clonedProblemData);
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | #region events
|
---|
| 135 | private void RegisterEventHandlers() {
|
---|
| 136 | ProblemDataParameter.ValueChanged += new EventHandler(ProblemDataParameter_ValueChanged);
|
---|
| 137 | if (ProblemDataParameter.Value != null) ProblemDataParameter.Value.Changed += new EventHandler(ProblemData_Changed);
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | private void ProblemDataParameter_ValueChanged(object sender, EventArgs e) {
|
---|
| 141 | ProblemDataParameter.Value.Changed += new EventHandler(ProblemData_Changed);
|
---|
| 142 | OnProblemDataChanged();
|
---|
| 143 | OnReset();
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | private void ProblemData_Changed(object sender, EventArgs e) {
|
---|
| 147 | OnReset();
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | private void OnProblemDataChanged() {
|
---|
| 151 | UpdateGrammar();
|
---|
| 152 |
|
---|
| 153 | var handler = ProblemDataChanged;
|
---|
| 154 | if (handler != null) handler(this, EventArgs.Empty);
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | private void UpdateGrammar() {
|
---|
| 158 | // whenever ProblemData is changed we create a new grammar with the necessary symbols
|
---|
| 159 | var g = new Grammar();
|
---|
| 160 | Encoding.Grammar = g;
|
---|
| 161 | }
|
---|
| 162 | #endregion
|
---|
| 163 |
|
---|
| 164 | #region Import & Export
|
---|
| 165 | public void Load(IRegressionProblemData data) {
|
---|
| 166 | Name = data.Name;
|
---|
| 167 | Description = data.Description;
|
---|
| 168 | ProblemData = data;
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | public IRegressionProblemData Export() {
|
---|
| 172 | return ProblemData;
|
---|
| 173 | }
|
---|
| 174 | #endregion
|
---|
| 175 | }
|
---|
| 176 | }
|
---|