1 | using System;
|
---|
2 | using System.Collections;
|
---|
3 | using System.Collections.Generic;
|
---|
4 | using System.Collections.ObjectModel;
|
---|
5 | using System.Collections.Specialized;
|
---|
6 | using System.Drawing.Design;
|
---|
7 | using System.Linq;
|
---|
8 | using HeuristicLab.Common;
|
---|
9 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
10 | using HeuristicLab.Problems.DataAnalysis;
|
---|
11 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
12 |
|
---|
13 | namespace HeuristicLab.Problems.GeneticProgramming.GlucosePrediction {
|
---|
14 | public static class Interpreter {
|
---|
15 | private class Data {
|
---|
16 | public double[] realGluc;
|
---|
17 | public double[] realIns;
|
---|
18 | public double[] realCh;
|
---|
19 | public Dictionary<ISymbolicExpressionTreeNode, double[]> precalculatedValues;
|
---|
20 | }
|
---|
21 |
|
---|
22 | public static IEnumerable<double> Apply(ISymbolicExpressionTreeNode model, IDataset dataset, IEnumerable<int> rows) {
|
---|
23 | double[] targetGluc = dataset.GetDoubleValues("Glucose_target", rows).ToArray(); // only for skipping rows for which we should not produce an output
|
---|
24 |
|
---|
25 | var data = new Data {
|
---|
26 | realGluc = dataset.GetDoubleValues("Glucose_Interpol", rows).ToArray(),
|
---|
27 | realIns = dataset.GetDoubleValues("Insuline", rows).ToArray(),
|
---|
28 | realCh = dataset.GetDoubleValues("CH", rows).ToArray(),
|
---|
29 | precalculatedValues = CreatePrecalculatedValues(model, dataset)
|
---|
30 | };
|
---|
31 | var predictions = new double[targetGluc.Length];
|
---|
32 | var rowsEnumerator = rows.GetEnumerator();
|
---|
33 | rowsEnumerator.MoveNext();
|
---|
34 | for (int k = 0; k < predictions.Length; k++, rowsEnumerator.MoveNext()) {
|
---|
35 | if (double.IsNaN(targetGluc[k])) {
|
---|
36 | predictions[k] = double.NaN;
|
---|
37 | } else {
|
---|
38 | var rawPred = InterpretRec(model, data, rowsEnumerator.Current);
|
---|
39 | predictions[k] = rawPred;
|
---|
40 | }
|
---|
41 | }
|
---|
42 | return predictions;
|
---|
43 | }
|
---|
44 |
|
---|
45 | private static Dictionary<ISymbolicExpressionTreeNode, double[]> CreatePrecalculatedValues(ISymbolicExpressionTreeNode root, IDataset dataset) {
|
---|
46 | var dict = new Dictionary<ISymbolicExpressionTreeNode, double[]>();
|
---|
47 | // here we integrate ins or ch inputs over the whole day to generate smoothed ins/ch values with the same number of rows
|
---|
48 | // the integrated values are reset to zero whenever a new evluation period starts
|
---|
49 | foreach (var node in root.IterateNodesPrefix()) {
|
---|
50 | var curvedInsNode = node as CurvedInsVariableTreeNode;
|
---|
51 | var curvedChNode = node as CurvedChVariableTreeNode;
|
---|
52 | if (curvedInsNode != null) {
|
---|
53 | dict.Add(curvedInsNode, Integrate(curvedInsNode, dataset));
|
---|
54 | } else if (curvedChNode != null) {
|
---|
55 | dict.Add(curvedChNode, Integrate(curvedChNode, dataset));
|
---|
56 | }
|
---|
57 | }
|
---|
58 | return dict;
|
---|
59 | }
|
---|
60 |
|
---|
61 | private static double[] Integrate(CurvedInsVariableTreeNode node, IDataset dataset) {
|
---|
62 | // d Q1 / dt = ins(t) - alpha * Q1(t)
|
---|
63 | // d Q2 / dt = alpha * (Q1(t) - Q2(t))
|
---|
64 | // d Q3 / dt = alpha * Q2(t) - beta * Q3(t)
|
---|
65 | var alpha = node.Alpha;
|
---|
66 | var beta = node.Beta;
|
---|
67 |
|
---|
68 | var ins = dataset.GetReadOnlyDoubleValues("Insuline");
|
---|
69 | var time = dataset.GetReadOnlyDoubleValues("HourMin").ToArray();
|
---|
70 |
|
---|
71 | double q1, q2, q3, q1_prev, q2_prev, q3_prev;
|
---|
72 | // starting values: zeros
|
---|
73 | q1 = q2 = q3 = q1_prev = q2_prev = q3_prev = 0;
|
---|
74 | double[] s = new double[dataset.Rows];
|
---|
75 |
|
---|
76 | for (int t = 1; t < dataset.Rows; t++) {
|
---|
77 | if (IsStartOfNewPeriod(time, t)) {
|
---|
78 | q1 = q2 = q3 = q1_prev = q2_prev = q3_prev = 0;
|
---|
79 | }
|
---|
80 | q1 = q1_prev + ins[t] - alpha * q1_prev;
|
---|
81 | q2 = q2_prev + alpha * (q1_prev - q2_prev);
|
---|
82 | q3 = q3_prev + alpha * q2_prev - beta * q3_prev;
|
---|
83 | s[t] = q3;
|
---|
84 | q1_prev = q1;
|
---|
85 | q2_prev = q2;
|
---|
86 | q3_prev = q3;
|
---|
87 |
|
---|
88 | }
|
---|
89 | return s;
|
---|
90 | }
|
---|
91 |
|
---|
92 | private static bool IsStartOfNewPeriod(double[] time, int t) {
|
---|
93 | return t == 0 ||
|
---|
94 | (time[t].IsAlmost(2005) && !time[t - 1].IsAlmost(2000));
|
---|
95 | }
|
---|
96 |
|
---|
97 |
|
---|
98 | private static double[] Integrate(CurvedChVariableTreeNode node, IDataset dataset) {
|
---|
99 | // d Q1 / dt = ins(t) - alpha * Q1(t)
|
---|
100 | // d Q2 / dt = alpha * (Q1(t) - Q2(t))
|
---|
101 | // d Q3 / dt = alpha * Q2(t) - beta * Q3(t)
|
---|
102 | var alpha = node.Alpha;
|
---|
103 | var beta = node.Beta;
|
---|
104 |
|
---|
105 | var ins = dataset.GetReadOnlyDoubleValues("CH");
|
---|
106 | var time = dataset.GetReadOnlyDoubleValues("HourMin").ToArray();
|
---|
107 |
|
---|
108 | double q1, q2, q3, q1_prev, q2_prev, q3_prev;
|
---|
109 | // starting values: zeros
|
---|
110 | q1 = q2 = q3 = q1_prev = q2_prev = q3_prev = 0;
|
---|
111 | double[] s = new double[dataset.Rows];
|
---|
112 |
|
---|
113 | for (int t = 1; t < dataset.Rows; t++) {
|
---|
114 | if (IsStartOfNewPeriod(time, t)) {
|
---|
115 | q1 = q2 = q3 = q1_prev = q2_prev = q3_prev = 0;
|
---|
116 | }
|
---|
117 | q1 = q1_prev + ins[t] - alpha * q1_prev;
|
---|
118 | q2 = q2_prev + alpha * (q1_prev - q2_prev);
|
---|
119 | q3 = q3_prev + alpha * q2_prev - beta * q3_prev;
|
---|
120 | s[t] = q3;
|
---|
121 | q1_prev = q1;
|
---|
122 | q2_prev = q2;
|
---|
123 | q3_prev = q3;
|
---|
124 |
|
---|
125 | }
|
---|
126 | return s;
|
---|
127 | }
|
---|
128 |
|
---|
129 | private static double InterpretRec(ISymbolicExpressionTreeNode node, Data data, int k) {
|
---|
130 | if (node.Symbol is SimpleSymbol) {
|
---|
131 | switch (node.Symbol.Name) {
|
---|
132 | case "+":
|
---|
133 | case "+Ins":
|
---|
134 | case "+Ch": {
|
---|
135 | return InterpretRec(node.GetSubtree(0), data, k) + InterpretRec(node.GetSubtree(1), data, k);
|
---|
136 | }
|
---|
137 | case "-":
|
---|
138 | case "-Ins":
|
---|
139 | case "-Ch": {
|
---|
140 | return InterpretRec(node.GetSubtree(0), data, k) - InterpretRec(node.GetSubtree(1), data, k);
|
---|
141 | }
|
---|
142 | case "*":
|
---|
143 | case "*Ins":
|
---|
144 | case "*Ch": {
|
---|
145 | return InterpretRec(node.GetSubtree(0), data, k) * InterpretRec(node.GetSubtree(1), data, k);
|
---|
146 | }
|
---|
147 | case "/Ch":
|
---|
148 | case "/Ins":
|
---|
149 | case "/": {
|
---|
150 | return InterpretRec(node.GetSubtree(0), data, k) / InterpretRec(node.GetSubtree(1), data, k);
|
---|
151 | }
|
---|
152 | case "Exp":
|
---|
153 | case "ExpIns":
|
---|
154 | case "ExpCh": {
|
---|
155 | return Math.Exp(InterpretRec(node.GetSubtree(0), data, k));
|
---|
156 | }
|
---|
157 | case "Sin":
|
---|
158 | case "SinIns":
|
---|
159 | case "SinCh": {
|
---|
160 | return Math.Sin(InterpretRec(node.GetSubtree(0), data, k));
|
---|
161 | }
|
---|
162 | case "CosCh":
|
---|
163 | case "CosIns":
|
---|
164 | case "Cos": {
|
---|
165 | return Math.Cos(InterpretRec(node.GetSubtree(0), data, k));
|
---|
166 | }
|
---|
167 | case "LogCh":
|
---|
168 | case "LogIns":
|
---|
169 | case "Log": {
|
---|
170 | return Math.Log(InterpretRec(node.GetSubtree(0), data, k));
|
---|
171 | }
|
---|
172 | case "Func": {
|
---|
173 | // <exprgluc> + <exprch> - <exprins>
|
---|
174 | return InterpretRec(node.GetSubtree(0), data, k)
|
---|
175 | + InterpretRec(node.GetSubtree(1), data, k)
|
---|
176 | - InterpretRec(node.GetSubtree(2), data, k);
|
---|
177 | }
|
---|
178 | case "ExprGluc": {
|
---|
179 | return InterpretRec(node.GetSubtree(0), data, k);
|
---|
180 | }
|
---|
181 | case "ExprCh": {
|
---|
182 | return InterpretRec(node.GetSubtree(0), data, k);
|
---|
183 | }
|
---|
184 | case "ExprIns": {
|
---|
185 | return InterpretRec(node.GetSubtree(0), data, k);
|
---|
186 | }
|
---|
187 | default: {
|
---|
188 | throw new InvalidProgramException("Found an unknown symbol " + node.Symbol);
|
---|
189 | }
|
---|
190 | }
|
---|
191 | } else if (node.Symbol is PredictedGlucoseVariableSymbol) {
|
---|
192 | throw new NotSupportedException();
|
---|
193 | } else if (node.Symbol is RealGlucoseVariableSymbol) {
|
---|
194 | var n = (RealGlucoseVariableTreeNode)node;
|
---|
195 | if (k + n.RowOffset < 0 || k + n.RowOffset >= data.realGluc.Length) return double.NaN;
|
---|
196 | return data.realGluc[k + n.RowOffset];
|
---|
197 | } else if (node.Symbol is CurvedChVariableSymbol) {
|
---|
198 | return data.precalculatedValues[node][k];
|
---|
199 | } else if (node.Symbol is RealInsulineVariableSymbol) {
|
---|
200 | throw new NotSupportedException();
|
---|
201 | } else if (node.Symbol is CurvedInsVariableSymbol) {
|
---|
202 | return data.precalculatedValues[node][k];
|
---|
203 | } else if (node.Symbol is Constant) {
|
---|
204 | var n = (ConstantTreeNode)node;
|
---|
205 | return n.Value;
|
---|
206 | } else {
|
---|
207 | throw new InvalidProgramException("found unknown symbol " + node.Symbol);
|
---|
208 | }
|
---|
209 | }
|
---|
210 |
|
---|
211 | }
|
---|
212 | }
|
---|