1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | #pragma warning disable 1591
|
---|
41 |
|
---|
42 | using System;
|
---|
43 | using System.Collections.Generic;
|
---|
44 | using System.Text;
|
---|
45 |
|
---|
46 | namespace ILNumerics.Native {
|
---|
47 | /// <summary>
|
---|
48 | /// Interface to all LAPACK/BLAS functions available
|
---|
49 | /// </summary>
|
---|
50 | /// <remarks>Each native module must implement this interface explicitly. Calls
|
---|
51 | /// to native functions are made virtual by calling functions of this interface.
|
---|
52 | /// Therefore the user can transparently call any function regardless of the
|
---|
53 | /// plattform the assymbly (currently) runs on. The native modules implementing
|
---|
54 | /// this interface take care of the details of implementation.
|
---|
55 | /// <para>Usually users of the library will not have to handle with this interface.
|
---|
56 | /// Its functions will be used from inside built in functions and are therefore wrapped
|
---|
57 | /// (mainly from inside <see cref="ILNumerics.ILMath">ILNumerics.ILMath</see>).</para>
|
---|
58 | /// <para>Every LAPACK/BLAS function is explicitly implemented for any type supported.
|
---|
59 | /// e.g. IILLapack includes four functions doing general matrix multiply: dgemm, zgemm, cgemm and sgemm -
|
---|
60 | /// for all four floating point datatypes supported from the LAPACK package.</para>
|
---|
61 | /// <para>LAPACK is an open source linear algebra functions package optimized for
|
---|
62 | /// use together with highly natively optimized BLAS functions. A LAPACK guide is
|
---|
63 | /// available in the internet: <see href="http://www.netlib.org/lapack">www.netlib.org</see>.</para>
|
---|
64 | /// </remarks>
|
---|
65 | [System.Security.SuppressUnmanagedCodeSecurity]
|
---|
66 | public interface IILLapack {
|
---|
67 |
|
---|
68 | #region ?GEMM
|
---|
69 |
|
---|
70 | /// <summary>
|
---|
71 | /// Wrapper implementiation for ATLAS GeneralMatrixMultiply
|
---|
72 | /// </summary>
|
---|
73 | /// <param name="TransA">Transposition state for matrix A: one of the constants in enum CBlas_Transpose</param>
|
---|
74 | /// <param name="TransB">Transposition state for matrix B: one of the constants in enum CBlas_Transpose</param>
|
---|
75 | /// <param name="M">Number of rows in A</param>
|
---|
76 | /// <param name="N">Number of columns in B</param>
|
---|
77 | /// <param name="K">Number of columns in A and number of rows in B</param>
|
---|
78 | /// <param name="alpha">multiplicationi factor for A</param>
|
---|
79 | /// <param name="A">pointer to array A</param>
|
---|
80 | /// <param name="lda">distance between first elements of each column for column based orientation or
|
---|
81 | /// distance between first elements of each row for row based orientation for matrix A</param>
|
---|
82 | /// <param name="B">pointer to array B</param>
|
---|
83 | /// <param name="ldb">distance between first elements of each column for column based orientation or
|
---|
84 | /// distance between first elements of each row for row based orientation for matrix B</param>
|
---|
85 | /// <param name="beta">multiplication faktor for matrix B</param>
|
---|
86 | /// <param name="C">pointer to predefined array C of neccessary length</param>
|
---|
87 | /// <param name="ldc">distance between first elements of each column for column based orientation or
|
---|
88 | /// distance between first elements of each row for row based orientation for matrix C</param>
|
---|
89 | /// <remarks>All parameters except C are readonly. Only elements of matrix C will be altered. C must be a predefined
|
---|
90 | /// continous array of size MxN</remarks>
|
---|
91 | void dgemm (char TransA, char TransB, int M, int N, int K,
|
---|
92 | double alpha, IntPtr A, int lda,
|
---|
93 | IntPtr B, int ldb,
|
---|
94 | double beta, double [] C, int ldc);
|
---|
95 |
|
---|
96 | /// <summary>
|
---|
97 | /// Wrapper implementiation for ATLAS GeneralMatrixMultiply
|
---|
98 | /// </summary>
|
---|
99 | /// <param name="TransA">Transposition state for matrix A: one of the constants in enum CBlas_Transpose</param>
|
---|
100 | /// <param name="TransB">Transposition state for matrix B: one of the constants in enum CBlas_Transpose</param>
|
---|
101 | /// <param name="M">Number of rows in A</param>
|
---|
102 | /// <param name="N">Number of columns in B</param>
|
---|
103 | /// <param name="K">Number of columns in A and number of rows in B</param>
|
---|
104 | /// <param name="alpha">multiplicationi factor for A</param>
|
---|
105 | /// <param name="A">pointer to array A</param>
|
---|
106 | /// <param name="lda">distance between first elements of each column for column based orientation or
|
---|
107 | /// distance between first elements of each row for row based orientation for matrix A</param>
|
---|
108 | /// <param name="B">pointer to array B</param>
|
---|
109 | /// <param name="ldb">distance between first elements of each column for column based orientation or
|
---|
110 | /// distance between first elements of each row for row based orientation for matrix B</param>
|
---|
111 | /// <param name="beta">multiplication faktor for matrix B</param>
|
---|
112 | /// <param name="C">pointer to predefined array C of neccessary length</param>
|
---|
113 | /// <param name="ldc">distance between first elements of each column for column based orientation or
|
---|
114 | /// distance between first elements of each row for row based orientation for matrix C</param>
|
---|
115 | /// <remarks>All parameters except C are readonly. Only elements of matrix C will be altered. C must be a predefined
|
---|
116 | /// continous array of size MxN</remarks>
|
---|
117 | void sgemm (char TransA, char TransB, int M, int N, int K,
|
---|
118 | float alpha, IntPtr A, int lda,
|
---|
119 | IntPtr B, int ldb,
|
---|
120 | float beta, float [] C, int ldc);
|
---|
121 |
|
---|
122 |
|
---|
123 | /// <summary>
|
---|
124 | /// Wrapper implementiation for ATLAS GeneralMatrixMultiply
|
---|
125 | /// </summary>
|
---|
126 | /// <param name="TransA">Transposition state for matrix A: one of the constants in enum CBlas_Transpose</param>
|
---|
127 | /// <param name="TransB">Transposition state for matrix B: one of the constants in enum CBlas_Transpose</param>
|
---|
128 | /// <param name="M">Number of rows in A</param>
|
---|
129 | /// <param name="N">Number of columns in B</param>
|
---|
130 | /// <param name="K">Number of columns in A and number of rows in B</param>
|
---|
131 | /// <param name="alpha">multiplicationi factor for A</param>
|
---|
132 | /// <param name="A">pointer to array A</param>
|
---|
133 | /// <param name="lda">distance between first elements of each column for column based orientation or
|
---|
134 | /// distance between first elements of each row for row based orientation for matrix A</param>
|
---|
135 | /// <param name="B">pointer to array B</param>
|
---|
136 | /// <param name="ldb">distance between first elements of each column for column based orientation or
|
---|
137 | /// distance between first elements of each row for row based orientation for matrix B</param>
|
---|
138 | /// <param name="beta">multiplication faktor for matrix B</param>
|
---|
139 | /// <param name="C">pointer to predefined array C of neccessary length</param>
|
---|
140 | /// <param name="ldc">distance between first elements of each column for column based orientation or
|
---|
141 | /// distance between first elements of each row for row based orientation for matrix C</param>
|
---|
142 | /// <remarks>All parameters except C are readonly. Only elements of matrix C will be altered. C must be a predefined
|
---|
143 | /// continous array of size MxN</remarks>
|
---|
144 | void cgemm (char TransA, char TransB, int M, int N, int K,
|
---|
145 | fcomplex alpha, IntPtr A, int lda,
|
---|
146 | IntPtr B, int ldb,
|
---|
147 | fcomplex beta, fcomplex [] C, int ldc);
|
---|
148 |
|
---|
149 |
|
---|
150 | /// <summary>
|
---|
151 | /// Wrapper implementiation for ATLAS GeneralMatrixMultiply
|
---|
152 | /// </summary>
|
---|
153 | /// <param name="TransA">Transposition state for matrix A: one of the constants in enum CBlas_Transpose</param>
|
---|
154 | /// <param name="TransB">Transposition state for matrix B: one of the constants in enum CBlas_Transpose</param>
|
---|
155 | /// <param name="M">Number of rows in A</param>
|
---|
156 | /// <param name="N">Number of columns in B</param>
|
---|
157 | /// <param name="K">Number of columns in A and number of rows in B</param>
|
---|
158 | /// <param name="alpha">multiplicationi factor for A</param>
|
---|
159 | /// <param name="A">pointer to array A</param>
|
---|
160 | /// <param name="lda">distance between first elements of each column for column based orientation or
|
---|
161 | /// distance between first elements of each row for row based orientation for matrix A</param>
|
---|
162 | /// <param name="B">pointer to array B</param>
|
---|
163 | /// <param name="ldb">distance between first elements of each column for column based orientation or
|
---|
164 | /// distance between first elements of each row for row based orientation for matrix B</param>
|
---|
165 | /// <param name="beta">multiplication faktor for matrix B</param>
|
---|
166 | /// <param name="C">pointer to predefined array C of neccessary length</param>
|
---|
167 | /// <param name="ldc">distance between first elements of each column for column based orientation or
|
---|
168 | /// distance between first elements of each row for row based orientation for matrix C</param>
|
---|
169 | /// <remarks>All parameters except C are readonly. Only elements of matrix C will be altered. C must be a predefined
|
---|
170 | /// continous array of size MxN</remarks>
|
---|
171 | void zgemm (char TransA, char TransB, int M, int N, int K,
|
---|
172 | complex alpha, IntPtr A, int lda,
|
---|
173 | IntPtr B, int ldb,
|
---|
174 | complex beta, complex [] C, int ldc);
|
---|
175 |
|
---|
176 | #endregion
|
---|
177 |
|
---|
178 | #region ?GESDD
|
---|
179 | /// <summary>
|
---|
180 | /// singular value decomposition, new version, more memory needed
|
---|
181 | /// </summary>
|
---|
182 | /// <param name="jobz">Specifies options for computing all or part of the matrix U
|
---|
183 | /// <list type="table">
|
---|
184 | /// <listheader>
|
---|
185 | /// <term>jobz value</term>
|
---|
186 | /// <description>... will result in:</description>
|
---|
187 | /// </listheader>
|
---|
188 | /// <item>
|
---|
189 | /// <term>A</term>
|
---|
190 | /// <description>all M columns of U and all N rows of V**T are
|
---|
191 | /// returned in the arrays U and VT</description>
|
---|
192 | /// </item>
|
---|
193 | /// <item> <term>S</term>
|
---|
194 | /// <description>the first min(M,N) columns of U and the first
|
---|
195 | /// min(M,N) rows of V**T are returned in the arrays U
|
---|
196 | /// and VT</description>
|
---|
197 | /// </item>
|
---|
198 | /// <item> <term>O</term>
|
---|
199 | /// <description>If M >= N, the first N columns of U are overwritten
|
---|
200 | /// on the array A and all rows of V**T are returned in
|
---|
201 | /// the array VT,
|
---|
202 | /// otherwise, all columns of U are returned in the
|
---|
203 | /// array U and the first M rows of V**T are overwritten
|
---|
204 | /// in the array VT</description>
|
---|
205 | /// </item>
|
---|
206 | /// <item> <term>N</term>
|
---|
207 | /// <description>no columns of U or rows of V**T are computed.</description>
|
---|
208 | /// </item>
|
---|
209 | /// </list>
|
---|
210 | /// </param>
|
---|
211 | /// <param name="m">The number of rows of the input matrix A. M greater or equal to 0.</param>
|
---|
212 | /// <param name="n">The number of columns of the input matrix A. N greater or equal to 0</param>
|
---|
213 | /// <param name="a">On entry, the M-by-N matrix A.
|
---|
214 | /// On exit, <list><item>
|
---|
215 | /// if JOBZ = 'O', A is overwritten with the first N columns
|
---|
216 | /// of U (the left singular vectors, stored
|
---|
217 | /// columnwise) if M >= N;
|
---|
218 | /// A is overwritten with the first M rows
|
---|
219 | /// of V**T (the right singular vectors, stored
|
---|
220 | /// rowwise) otherwise.</item>
|
---|
221 | /// <item>if JOBZ .ne. 'O', the contents of A are destroyed.</item></list></param>
|
---|
222 | /// <param name="lda">The leading dimension of the array A. LDA ge max(1,M).</param>
|
---|
223 | /// <param name="s">array, dimension (min(M,N)). The singular values of A, sorted so that S(i) ge S(i+1)</param>
|
---|
224 | /// <param name="u">array, dimension (LDU,UCOL)
|
---|
225 | /// UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
|
---|
226 | /// UCOL = min(M,N) if JOBZ = 'S'.
|
---|
227 | /// If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
|
---|
228 | /// orthogonal matrix U;
|
---|
229 | /// if JOBZ = 'S', U contains the first min(M,N) columns of U
|
---|
230 | /// (the left singular vectors, stored columnwise);
|
---|
231 | /// if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.</param>
|
---|
232 | /// <param name="ldu">The leading dimension of the array U. LDU >= 1; if
|
---|
233 | /// JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M</param>
|
---|
234 | /// <param name="vt">array, dimension (LDVT,N). If JOBZ = 'A' or JOBZ = 'O' and
|
---|
235 | /// M >= N, VT contains the N-by-N orthogonal matrix V**T; if JOBZ = 'S',
|
---|
236 | /// VT contains the first min(M,N) rows of V**T
|
---|
237 | /// (the right singular vectors, stored rowwise); if JOBZ = 'O' and M < N,
|
---|
238 | /// or JOBZ = 'N', VT is not referenced</param>
|
---|
239 | /// <param name="ldvt">The leading dimension of the array VT. LDVT > = 1;
|
---|
240 | /// if JOBZ = 'A' or JOBZ = 'O' and M > = N, LDVT >= N;
|
---|
241 | /// if JOBZ = 'S', LDVT > min(M,N).</param>
|
---|
242 | /// <param name="info">
|
---|
243 | /// <list>
|
---|
244 | /// <item> 0: successful exit.</item>
|
---|
245 | /// <item> <![CDATA[< 0]]> : if INFO = -i, the i-th argument had an illegal value.</item>
|
---|
246 | /// <item> <![CDATA[> 0]]> : ?BGSDD did not converge, updating process failed.</item>
|
---|
247 | /// </list>
|
---|
248 | /// </param>
|
---|
249 | /// <remarks>(From the lapack manual):DGESDD computes the singular value decomposition (SVD) of a real
|
---|
250 | ///M-by-N matrix A, optionally computing the left and right singular
|
---|
251 | ///vectors. If singular vectors are desired, it uses a
|
---|
252 | ///divide-and-conquer algorithm.
|
---|
253 | ///The SVD is written
|
---|
254 | /// <code>A = U * SIGMA * transpose(V)</code>
|
---|
255 | ///where SIGMA is an M-by-N matrix which is zero except for its
|
---|
256 | ///min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
|
---|
257 | ///V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
|
---|
258 | ///are the singular values of A; they are real and non-negative, and
|
---|
259 | ///are returned in descending order. The first min(m,n) columns of
|
---|
260 | ///U and V are the left and right singular vectors of A.
|
---|
261 | ///Note that the routine returns VT = V**T, not V.
|
---|
262 | ///The divide and conquer algorithm makes very mild assumptions about
|
---|
263 | ///floating point arithmetic. It will work on machines with a guard
|
---|
264 | ///digit in add/subtract, or on those binary machines without guard
|
---|
265 | ///digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
|
---|
266 | ///Cray-2. It could conceivably fail on hexadecimal or decimal machines
|
---|
267 | ///without guard digits, but we know of none.</remarks>
|
---|
268 | void dgesdd (char jobz, int m, int n,
|
---|
269 | double [] a, int lda, double [] s,
|
---|
270 | double [] u, int ldu, double [] vt,
|
---|
271 | int ldvt, //double [] work, int lwork,
|
---|
272 | // int [] iwork,
|
---|
273 | ref int info);
|
---|
274 |
|
---|
275 | /// <summary>
|
---|
276 | /// singular value decomposition, new version, more memory needed
|
---|
277 | /// </summary>
|
---|
278 | /// <param name="jobz">Specifies options for computing all or part of the matrix U
|
---|
279 | /// <list type="table">
|
---|
280 | /// <listheader>
|
---|
281 | /// <term>jobz value</term>
|
---|
282 | /// <description>... will result in:</description>
|
---|
283 | /// </listheader>
|
---|
284 | /// <item>
|
---|
285 | /// <term>A</term>
|
---|
286 | /// <description>all M columns of U and all N rows of V**T are
|
---|
287 | /// returned in the arrays U and VT</description>
|
---|
288 | /// </item>
|
---|
289 | /// <item> <term>S</term>
|
---|
290 | /// <description>the first min(M,N) columns of U and the first
|
---|
291 | /// min(M,N) rows of V**T are returned in the arrays U
|
---|
292 | /// and VT</description>
|
---|
293 | /// </item>
|
---|
294 | /// <item> <term>O</term>
|
---|
295 | /// <description>If M >= N, the first N columns of U are overwritten
|
---|
296 | /// on the array A and all rows of V**T are returned in
|
---|
297 | /// the array VT,
|
---|
298 | /// otherwise, all columns of U are returned in the
|
---|
299 | /// array U and the first M rows of V**T are overwritten
|
---|
300 | /// in the array VT</description>
|
---|
301 | /// </item>
|
---|
302 | /// <item> <term>N</term>
|
---|
303 | /// <description>no columns of U or rows of V**T are computed.</description>
|
---|
304 | /// </item>
|
---|
305 | /// </list>
|
---|
306 | /// </param>
|
---|
307 | /// <param name="m">The number of rows of the input matrix A. M greater or equal to 0.</param>
|
---|
308 | /// <param name="n">The number of columns of the input matrix A. N greater or equal to 0</param>
|
---|
309 | /// <param name="a">On entry, the M-by-N matrix A.
|
---|
310 | /// On exit, <list><item>
|
---|
311 | /// if JOBZ = 'O', A is overwritten with the first N columns
|
---|
312 | /// of U (the left singular vectors, stored
|
---|
313 | /// columnwise) if M >= N;
|
---|
314 | /// A is overwritten with the first M rows
|
---|
315 | /// of V**T (the right singular vectors, stored
|
---|
316 | /// rowwise) otherwise.</item>
|
---|
317 | /// <item>if JOBZ .ne. 'O', the contents of A are destroyed.</item></list></param>
|
---|
318 | /// <param name="lda">The leading dimension of the array A. LDA ge max(1,M).</param>
|
---|
319 | /// <param name="s">array, dimension (min(M,N)). The singular values of A, sorted so that S(i) ge S(i+1)</param>
|
---|
320 | /// <param name="u">array, dimension (LDU,UCOL)
|
---|
321 | /// UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
|
---|
322 | /// UCOL = min(M,N) if JOBZ = 'S'.
|
---|
323 | /// If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
|
---|
324 | /// orthogonal matrix U;
|
---|
325 | /// if JOBZ = 'S', U contains the first min(M,N) columns of U
|
---|
326 | /// (the left singular vectors, stored columnwise);
|
---|
327 | /// if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.</param>
|
---|
328 | /// <param name="ldu">The leading dimension of the array U. LDU >= 1; if
|
---|
329 | /// JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M</param>
|
---|
330 | /// <param name="vt">array, dimension (LDVT,N). If JOBZ = 'A' or JOBZ = 'O' and
|
---|
331 | /// M >= N, VT contains the N-by-N orthogonal matrix V**T; if JOBZ = 'S',
|
---|
332 | /// VT contains the first min(M,N) rows of V**T
|
---|
333 | /// (the right singular vectors, stored rowwise); if JOBZ = 'O' and M < N,
|
---|
334 | /// or JOBZ = 'N', VT is not referenced</param>
|
---|
335 | /// <param name="ldvt">The leading dimension of the array VT. LDVT > = 1;
|
---|
336 | /// if JOBZ = 'A' or JOBZ = 'O' and M > = N, LDVT >= N;
|
---|
337 | /// if JOBZ = 'S', LDVT > min(M,N).</param>
|
---|
338 | /// <param name="info">
|
---|
339 | /// <list>
|
---|
340 | /// <item> 0: successful exit.</item>
|
---|
341 | /// <item> <![CDATA[< 0]]> : if INFO = -i, the i-th argument had an illegal value.</item>
|
---|
342 | /// <item> <![CDATA[> 0]]> : ?BGSDD did not converge, updating process failed.</item>
|
---|
343 | /// </list>
|
---|
344 | /// </param>
|
---|
345 | /// <remarks>(From the lapack manual):DGESDD computes the singular value decomposition (SVD) of a real
|
---|
346 | ///M-by-N matrix A, optionally computing the left and right singular
|
---|
347 | ///vectors. If singular vectors are desired, it uses a
|
---|
348 | ///divide-and-conquer algorithm.
|
---|
349 | ///The SVD is written
|
---|
350 | /// <code>A = U * SIGMA * transpose(V)</code>
|
---|
351 | ///where SIGMA is an M-by-N matrix which is zero except for its
|
---|
352 | ///min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
|
---|
353 | ///V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
|
---|
354 | ///are the singular values of A; they are real and non-negative, and
|
---|
355 | ///are returned in descending order. The first min(m,n) columns of
|
---|
356 | ///U and V are the left and right singular vectors of A.
|
---|
357 | ///Note that the routine returns VT = V**T, not V.
|
---|
358 | ///The divide and conquer algorithm makes very mild assumptions about
|
---|
359 | ///floating point arithmetic. It will work on machines with a guard
|
---|
360 | ///digit in add/subtract, or on those binary machines without guard
|
---|
361 | ///digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
|
---|
362 | ///Cray-2. It could conceivably fail on hexadecimal or decimal machines
|
---|
363 | ///without guard digits, but we know of none.</remarks>
|
---|
364 | void sgesdd (char jobz, int m, int n,
|
---|
365 | float [] a, int lda, float [] s,
|
---|
366 | float [] u, int ldu, float [] vt,
|
---|
367 | int ldvt, //double [] work, int lwork,
|
---|
368 | // int [] iwork,
|
---|
369 | ref int info);
|
---|
370 |
|
---|
371 | /// <summary>
|
---|
372 | /// singular value decomposition, new version, more memory needed
|
---|
373 | /// </summary>
|
---|
374 | /// <param name="jobz">Specifies options for computing all or part of the matrix U
|
---|
375 | /// <list type="table">
|
---|
376 | /// <listheader>
|
---|
377 | /// <term>jobz value</term>
|
---|
378 | /// <description>... will result in:</description>
|
---|
379 | /// </listheader>
|
---|
380 | /// <item>
|
---|
381 | /// <term>A</term>
|
---|
382 | /// <description>all M columns of U and all N rows of V**T are
|
---|
383 | /// returned in the arrays U and VT</description>
|
---|
384 | /// </item>
|
---|
385 | /// <item> <term>S</term>
|
---|
386 | /// <description>the first min(M,N) columns of U and the first
|
---|
387 | /// min(M,N) rows of V**T are returned in the arrays U
|
---|
388 | /// and VT</description>
|
---|
389 | /// </item>
|
---|
390 | /// <item> <term>O</term>
|
---|
391 | /// <description>If M >= N, the first N columns of U are overwritten
|
---|
392 | /// on the array A and all rows of V**T are returned in
|
---|
393 | /// the array VT,
|
---|
394 | /// otherwise, all columns of U are returned in the
|
---|
395 | /// array U and the first M rows of V**T are overwritten
|
---|
396 | /// in the array VT</description>
|
---|
397 | /// </item>
|
---|
398 | /// <item> <term>N</term>
|
---|
399 | /// <description>no columns of U or rows of V**T are computed.</description>
|
---|
400 | /// </item>
|
---|
401 | /// </list>
|
---|
402 | /// </param>
|
---|
403 | /// <param name="m">The number of rows of the input matrix A. M greater or equal to 0.</param>
|
---|
404 | /// <param name="n">The number of columns of the input matrix A. N greater or equal to 0</param>
|
---|
405 | /// <param name="a">On entry, the M-by-N matrix A.
|
---|
406 | /// On exit, <list><item>
|
---|
407 | /// if JOBZ = 'O', A is overwritten with the first N columns
|
---|
408 | /// of U (the left singular vectors, stored
|
---|
409 | /// columnwise) if M >= N;
|
---|
410 | /// A is overwritten with the first M rows
|
---|
411 | /// of V**T (the right singular vectors, stored
|
---|
412 | /// rowwise) otherwise.</item>
|
---|
413 | /// <item>if JOBZ .ne. 'O', the contents of A are destroyed.</item></list></param>
|
---|
414 | /// <param name="lda">The leading dimension of the array A. LDA ge max(1,M).</param>
|
---|
415 | /// <param name="s">array, dimension (min(M,N)). The singular values of A, sorted so that S(i) ge S(i+1)</param>
|
---|
416 | /// <param name="u">array, dimension (LDU,UCOL)
|
---|
417 | /// UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
|
---|
418 | /// UCOL = min(M,N) if JOBZ = 'S'.
|
---|
419 | /// If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
|
---|
420 | /// orthogonal matrix U;
|
---|
421 | /// if JOBZ = 'S', U contains the first min(M,N) columns of U
|
---|
422 | /// (the left singular vectors, stored columnwise);
|
---|
423 | /// if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.</param>
|
---|
424 | /// <param name="ldu">The leading dimension of the array U. LDU >= 1; if
|
---|
425 | /// JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M</param>
|
---|
426 | /// <param name="vt">array, dimension (LDVT,N). If JOBZ = 'A' or JOBZ = 'O' and
|
---|
427 | /// M >= N, VT contains the N-by-N orthogonal matrix V**T; if JOBZ = 'S',
|
---|
428 | /// VT contains the first min(M,N) rows of V**T
|
---|
429 | /// (the right singular vectors, stored rowwise); if JOBZ = 'O' and M < N,
|
---|
430 | /// or JOBZ = 'N', VT is not referenced</param>
|
---|
431 | /// <param name="ldvt">The leading dimension of the array VT. LDVT > = 1;
|
---|
432 | /// if JOBZ = 'A' or JOBZ = 'O' and M > = N, LDVT >= N;
|
---|
433 | /// if JOBZ = 'S', LDVT > min(M,N).</param>
|
---|
434 | /// <param name="info">
|
---|
435 | /// <list>
|
---|
436 | /// <item> 0: successful exit.</item>
|
---|
437 | /// <item> <![CDATA[< 0]]> : if INFO = -i, the i-th argument had an illegal value.</item>
|
---|
438 | /// <item> <![CDATA[> 0]]> : ?BGSDD did not converge, updating process failed.</item>
|
---|
439 | /// </list>
|
---|
440 | /// </param>
|
---|
441 | /// <remarks>(From the lapack manual):DGESDD computes the singular value decomposition (SVD) of a real
|
---|
442 | ///M-by-N matrix A, optionally computing the left and right singular
|
---|
443 | ///vectors. If singular vectors are desired, it uses a
|
---|
444 | ///divide-and-conquer algorithm.
|
---|
445 | ///The SVD is written
|
---|
446 | /// <code>A = U * SIGMA * transpose(V)</code>
|
---|
447 | ///where SIGMA is an M-by-N matrix which is zero except for its
|
---|
448 | ///min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
|
---|
449 | ///V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
|
---|
450 | ///are the singular values of A; they are real and non-negative, and
|
---|
451 | ///are returned in descending order. The first min(m,n) columns of
|
---|
452 | ///U and V are the left and right singular vectors of A.
|
---|
453 | ///Note that the routine returns VT = V**T, not V.
|
---|
454 | ///The divide and conquer algorithm makes very mild assumptions about
|
---|
455 | ///floating point arithmetic. It will work on machines with a guard
|
---|
456 | ///digit in add/subtract, or on those binary machines without guard
|
---|
457 | ///digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
|
---|
458 | ///Cray-2. It could conceivably fail on hexadecimal or decimal machines
|
---|
459 | ///without guard digits, but we know of none.</remarks>
|
---|
460 | void cgesdd (char jobz, int m, int n,
|
---|
461 | fcomplex [] a, int lda, float [] s,
|
---|
462 | fcomplex [] u, int ldu, fcomplex [] vt,
|
---|
463 | int ldvt, //double [] work, int lwork,
|
---|
464 | // int [] iwork,
|
---|
465 | ref int info);
|
---|
466 |
|
---|
467 | /// <summary>
|
---|
468 | /// singular value decomposition, new version, more memory needed
|
---|
469 | /// </summary>
|
---|
470 | /// <param name="jobz">Specifies options for computing all or part of the matrix U
|
---|
471 | /// <list type="table">
|
---|
472 | /// <listheader>
|
---|
473 | /// <term>jobz value</term>
|
---|
474 | /// <description>... will result in:</description>
|
---|
475 | /// </listheader>
|
---|
476 | /// <item>
|
---|
477 | /// <term>A</term>
|
---|
478 | /// <description>all M columns of U and all N rows of V**T are
|
---|
479 | /// returned in the arrays U and VT</description>
|
---|
480 | /// </item>
|
---|
481 | /// <item> <term>S</term>
|
---|
482 | /// <description>the first min(M,N) columns of U and the first
|
---|
483 | /// min(M,N) rows of V**T are returned in the arrays U
|
---|
484 | /// and VT</description>
|
---|
485 | /// </item>
|
---|
486 | /// <item> <term>O</term>
|
---|
487 | /// <description>If M >= N, the first N columns of U are overwritten
|
---|
488 | /// on the array A and all rows of V**T are returned in
|
---|
489 | /// the array VT,
|
---|
490 | /// otherwise, all columns of U are returned in the
|
---|
491 | /// array U and the first M rows of V**T are overwritten
|
---|
492 | /// in the array VT</description>
|
---|
493 | /// </item>
|
---|
494 | /// <item> <term>N</term>
|
---|
495 | /// <description>no columns of U or rows of V**T are computed.</description>
|
---|
496 | /// </item>
|
---|
497 | /// </list>
|
---|
498 | /// </param>
|
---|
499 | /// <param name="m">The number of rows of the input matrix A. M greater or equal to 0.</param>
|
---|
500 | /// <param name="n">The number of columns of the input matrix A. N greater or equal to 0</param>
|
---|
501 | /// <param name="a">On entry, the M-by-N matrix A.
|
---|
502 | /// On exit, <list><item>
|
---|
503 | /// if JOBZ = 'O', A is overwritten with the first N columns
|
---|
504 | /// of U (the left singular vectors, stored
|
---|
505 | /// columnwise) if M >= N;
|
---|
506 | /// A is overwritten with the first M rows
|
---|
507 | /// of V**T (the right singular vectors, stored
|
---|
508 | /// rowwise) otherwise.</item>
|
---|
509 | /// <item>if JOBZ .ne. 'O', the contents of A are destroyed.</item></list></param>
|
---|
510 | /// <param name="lda">The leading dimension of the array A. LDA ge max(1,M).</param>
|
---|
511 | /// <param name="s">array, dimension (min(M,N)). The singular values of A, sorted so that S(i) ge S(i+1)</param>
|
---|
512 | /// <param name="u">array, dimension (LDU,UCOL)
|
---|
513 | /// UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
|
---|
514 | /// UCOL = min(M,N) if JOBZ = 'S'.
|
---|
515 | /// If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
|
---|
516 | /// orthogonal matrix U;
|
---|
517 | /// if JOBZ = 'S', U contains the first min(M,N) columns of U
|
---|
518 | /// (the left singular vectors, stored columnwise);
|
---|
519 | /// if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.</param>
|
---|
520 | /// <param name="ldu">The leading dimension of the array U. LDU >= 1; if
|
---|
521 | /// JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M</param>
|
---|
522 | /// <param name="vt">array, dimension (LDVT,N). If JOBZ = 'A' or JOBZ = 'O' and
|
---|
523 | /// M >= N, VT contains the N-by-N orthogonal matrix V**T; if JOBZ = 'S',
|
---|
524 | /// VT contains the first min(M,N) rows of V**T
|
---|
525 | /// (the right singular vectors, stored rowwise); if JOBZ = 'O' and M < N,
|
---|
526 | /// or JOBZ = 'N', VT is not referenced</param>
|
---|
527 | /// <param name="ldvt">The leading dimension of the array VT. LDVT > = 1;
|
---|
528 | /// if JOBZ = 'A' or JOBZ = 'O' and M > = N, LDVT >= N;
|
---|
529 | /// if JOBZ = 'S', LDVT > min(M,N).</param>
|
---|
530 | /// <param name="info">
|
---|
531 | /// <list>
|
---|
532 | /// <item> 0: successful exit.</item>
|
---|
533 | /// <item> <![CDATA[< 0]]> : if INFO = -i, the i-th argument had an illegal value.</item>
|
---|
534 | /// <item> <![CDATA[> 0]]> : ?BGSDD did not converge, updating process failed.</item>
|
---|
535 | /// </list>
|
---|
536 | /// </param>
|
---|
537 | /// <remarks>(From the lapack manual):DGESDD computes the singular value decomposition (SVD) of a real
|
---|
538 | ///M-by-N matrix A, optionally computing the left and right singular
|
---|
539 | ///vectors. If singular vectors are desired, it uses a
|
---|
540 | ///divide-and-conquer algorithm.
|
---|
541 | ///The SVD is written
|
---|
542 | /// <code>A = U * SIGMA * transpose(V)</code>
|
---|
543 | ///where SIGMA is an M-by-N matrix which is zero except for its
|
---|
544 | ///min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
|
---|
545 | ///V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
|
---|
546 | ///are the singular values of A; they are real and non-negative, and
|
---|
547 | ///are returned in descending order. The first min(m,n) columns of
|
---|
548 | ///U and V are the left and right singular vectors of A.
|
---|
549 | ///Note that the routine returns VT = V**T, not V.
|
---|
550 | ///The divide and conquer algorithm makes very mild assumptions about
|
---|
551 | ///floating point arithmetic. It will work on machines with a guard
|
---|
552 | ///digit in add/subtract, or on those binary machines without guard
|
---|
553 | ///digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
|
---|
554 | ///Cray-2. It could conceivably fail on hexadecimal or decimal machines
|
---|
555 | ///without guard digits, but we know of none.</remarks>
|
---|
556 | void zgesdd (char jobz, int m, int n,
|
---|
557 | complex [] a, int lda, double [] s,
|
---|
558 | complex [] u, int ldu, complex [] vt,
|
---|
559 | int ldvt, //double [] work, int lwork,
|
---|
560 | // int [] iwork,
|
---|
561 | ref int info);
|
---|
562 |
|
---|
563 | #endregion
|
---|
564 |
|
---|
565 | #region ?GESVD
|
---|
566 | /// <summary>
|
---|
567 | /// singular value decomposition, older version, less memory needed
|
---|
568 | /// </summary>
|
---|
569 | /// <param name="jobz">Specifies options for computing all or part of the matrix U
|
---|
570 | /// <list type="bullet"><item>= 'A': all M columns of U and all N rows of V**T are
|
---|
571 | ///returned in the arrays U and VT</item>
|
---|
572 | /// <item> = 'S': the first min(M,N) columns of U and the first
|
---|
573 | /// min(M,N) rows of V**T are returned in the arrays U
|
---|
574 | /// and VT</item>
|
---|
575 | /// <item> = 'O': If M >= N, the first N columns of U are overwritten
|
---|
576 | /// on the array A and all rows of V**T are returned in
|
---|
577 | /// the array VT. Otherwise, all columns of U are returned in the
|
---|
578 | /// array U and the first M rows of V**T are overwritten
|
---|
579 | /// in the array VT</item>
|
---|
580 | /// <item> = 'N': no columns of U or rows of V**T are computed.</item>
|
---|
581 | /// </list>
|
---|
582 | /// </param>
|
---|
583 | /// <param name="m">The number of rows of the input matrix A. M greater or equal to 0.</param>
|
---|
584 | /// <param name="n">The number of columns of the input matrix A. N greater or equal to 0</param>
|
---|
585 | /// <param name="a">On entry, the M-by-N matrix A.
|
---|
586 | /// On exit, <list><item>
|
---|
587 | /// if JOBZ = 'O', A is overwritten with the first N columns
|
---|
588 | /// of U (the left singular vectors, stored
|
---|
589 | /// columnwise) if M >= N;
|
---|
590 | /// A is overwritten with the first M rows
|
---|
591 | /// of V**T (the right singular vectors, stored
|
---|
592 | /// rowwise) otherwise.</item>
|
---|
593 | /// <item>if JOBZ .ne. 'O', the contents of A are destroyed.</item></list></param>
|
---|
594 | /// <param name="lda">The leading dimension of the array A. LDA ge max(1,M).</param>
|
---|
595 | /// <param name="s">array, dimension (min(M,N)). The singular values of A, sorted so that S(i) ge S(i+1)</param>
|
---|
596 | /// <param name="u">array, dimension (LDU,UCOL)
|
---|
597 | /// UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
|
---|
598 | /// UCOL = min(M,N) if JOBZ = 'S'.
|
---|
599 | /// If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
|
---|
600 | /// orthogonal matrix U;
|
---|
601 | /// if JOBZ = 'S', U contains the first min(M,N) columns of U
|
---|
602 | /// (the left singular vectors, stored columnwise);
|
---|
603 | /// if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.</param>
|
---|
604 | /// <param name="ldu">The leading dimension of the array U. LDU >= 1; if
|
---|
605 | /// JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M</param>
|
---|
606 | /// <param name="vt">array, dimension (LDVT,N). If JOBZ = 'A' or JOBZ = 'O' and
|
---|
607 | /// M >= N, VT contains the N-by-N orthogonal matrix V**T; if JOBZ = 'S',
|
---|
608 | /// VT contains the first min(M,N) rows of V**T
|
---|
609 | /// (the right singular vectors, stored rowwise); if JOBZ = 'O' and M < N,
|
---|
610 | /// or JOBZ = 'N', VT is not referenced</param>
|
---|
611 | /// <param name="ldvt">The leading dimension of the array VT. LDVT > = 1;
|
---|
612 | /// if JOBZ = 'A' or JOBZ = 'O' and M > = N, LDVT >= N;
|
---|
613 | /// if JOBZ = 'S', LDVT > min(M,N).</param>
|
---|
614 | /// <param name="info">
|
---|
615 | /// <list>
|
---|
616 | /// <item> 0: successful exit.</item>
|
---|
617 | /// <item> lower 0: if INFO = -i, the i-th argument had an illegal value.</item>
|
---|
618 | /// <item> greater 0: DBDSDC did not converge, updating process failed.</item>
|
---|
619 | /// </list>
|
---|
620 | /// </param>
|
---|
621 | /// <remarks>(From the lapack manual):DGESDD computes the singular value decomposition (SVD) of a real
|
---|
622 | ///M-by-N matrix A, optionally computing the left and right singular
|
---|
623 | ///vectors. If singular vectors are desired, it uses a
|
---|
624 | ///divide-and-conquer algorithm.
|
---|
625 | ///The SVD is written
|
---|
626 | /// <br>A = U * SIGMA * transpose(V)</br>
|
---|
627 | ///where SIGMA is an M-by-N matrix which is zero except for its
|
---|
628 | ///min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
|
---|
629 | ///V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
|
---|
630 | ///are the singular values of A; they are real and non-negative, and
|
---|
631 | ///are returned in descending order. The first min(m,n) columns of
|
---|
632 | ///U and V are the left and right singular vectors of A.
|
---|
633 | ///Note that the routine returns VT = V**T, not V.
|
---|
634 | ///The divide and conquer algorithm makes very mild assumptions about
|
---|
635 | ///floating point arithmetic. It will work on machines with a guard
|
---|
636 | ///digit in add/subtract, or on those binary machines without guard
|
---|
637 | ///digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
|
---|
638 | ///Cray-2. It could conceivably fail on hexadecimal or decimal machines
|
---|
639 | ///without guard digits, but we know of none.</remarks>
|
---|
640 | void dgesvd (char jobz, int m, int n, double [] a, int lda,
|
---|
641 | double [] s, double [] u, int ldu,
|
---|
642 | double [] vt, int ldvt, ref int info);
|
---|
643 |
|
---|
644 | /// <summary>
|
---|
645 | /// singular value decomposition, older version, less memory needed
|
---|
646 | /// </summary>
|
---|
647 | /// <param name="jobz">Specifies options for computing all or part of the matrix U
|
---|
648 | /// <list type="bullet"><item>= 'A': all M columns of U and all N rows of V**T are
|
---|
649 | ///returned in the arrays U and VT</item>
|
---|
650 | /// <item> = 'S': the first min(M,N) columns of U and the first
|
---|
651 | /// min(M,N) rows of V**T are returned in the arrays U
|
---|
652 | /// and VT</item>
|
---|
653 | /// <item> = 'O': If M >= N, the first N columns of U are overwritten
|
---|
654 | /// on the array A and all rows of V**T are returned in
|
---|
655 | /// the array VT. Otherwise, all columns of U are returned in the
|
---|
656 | /// array U and the first M rows of V**T are overwritten
|
---|
657 | /// in the array VT</item>
|
---|
658 | /// <item> = 'N': no columns of U or rows of V**T are computed.</item>
|
---|
659 | /// </list>
|
---|
660 | /// </param>
|
---|
661 | /// <param name="m">The number of rows of the input matrix A. M greater or equal to 0.</param>
|
---|
662 | /// <param name="n">The number of columns of the input matrix A. N greater or equal to 0</param>
|
---|
663 | /// <param name="a">On entry, the M-by-N matrix A.
|
---|
664 | /// On exit, <list><item>
|
---|
665 | /// if JOBZ = 'O', A is overwritten with the first N columns
|
---|
666 | /// of U (the left singular vectors, stored
|
---|
667 | /// columnwise) if M >= N;
|
---|
668 | /// A is overwritten with the first M rows
|
---|
669 | /// of V**T (the right singular vectors, stored
|
---|
670 | /// rowwise) otherwise.</item>
|
---|
671 | /// <item>if JOBZ .ne. 'O', the contents of A are destroyed.</item></list></param>
|
---|
672 | /// <param name="lda">The leading dimension of the array A. LDA ge max(1,M).</param>
|
---|
673 | /// <param name="s">array, dimension (min(M,N)). The singular values of A, sorted so that S(i) ge S(i+1)</param>
|
---|
674 | /// <param name="u">array, dimension (LDU,UCOL)
|
---|
675 | /// UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
|
---|
676 | /// UCOL = min(M,N) if JOBZ = 'S'.
|
---|
677 | /// If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
|
---|
678 | /// orthogonal matrix U;
|
---|
679 | /// if JOBZ = 'S', U contains the first min(M,N) columns of U
|
---|
680 | /// (the left singular vectors, stored columnwise);
|
---|
681 | /// if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.</param>
|
---|
682 | /// <param name="ldu">The leading dimension of the array U. LDU >= 1; if
|
---|
683 | /// JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M</param>
|
---|
684 | /// <param name="vt">array, dimension (LDVT,N). If JOBZ = 'A' or JOBZ = 'O' and
|
---|
685 | /// M >= N, VT contains the N-by-N orthogonal matrix V**T; if JOBZ = 'S',
|
---|
686 | /// VT contains the first min(M,N) rows of V**T
|
---|
687 | /// (the right singular vectors, stored rowwise); if JOBZ = 'O' and M < N,
|
---|
688 | /// or JOBZ = 'N', VT is not referenced</param>
|
---|
689 | /// <param name="ldvt">The leading dimension of the array VT. LDVT > = 1;
|
---|
690 | /// if JOBZ = 'A' or JOBZ = 'O' and M > = N, LDVT >= N;
|
---|
691 | /// if JOBZ = 'S', LDVT > min(M,N).</param>
|
---|
692 | /// <param name="info">
|
---|
693 | /// <list>
|
---|
694 | /// <item> 0: successful exit.</item>
|
---|
695 | /// <item> lower 0: if INFO = -i, the i-th argument had an illegal value.</item>
|
---|
696 | /// <item> greater 0: DBDSDC did not converge, updating process failed.</item>
|
---|
697 | /// </list>
|
---|
698 | /// </param>
|
---|
699 | /// <remarks>(From the lapack manual):DGESDD computes the singular value decomposition (SVD) of a real
|
---|
700 | ///M-by-N matrix A, optionally computing the left and right singular
|
---|
701 | ///vectors. If singular vectors are desired, it uses a
|
---|
702 | ///divide-and-conquer algorithm.
|
---|
703 | ///The SVD is written
|
---|
704 | /// <br>A = U * SIGMA * transpose(V)</br>
|
---|
705 | ///where SIGMA is an M-by-N matrix which is zero except for its
|
---|
706 | ///min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
|
---|
707 | ///V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
|
---|
708 | ///are the singular values of A; they are real and non-negative, and
|
---|
709 | ///are returned in descending order. The first min(m,n) columns of
|
---|
710 | ///U and V are the left and right singular vectors of A.
|
---|
711 | ///Note that the routine returns VT = V**T, not V.
|
---|
712 | ///The divide and conquer algorithm makes very mild assumptions about
|
---|
713 | ///floating point arithmetic. It will work on machines with a guard
|
---|
714 | ///digit in add/subtract, or on those binary machines without guard
|
---|
715 | ///digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
|
---|
716 | ///Cray-2. It could conceivably fail on hexadecimal or decimal machines
|
---|
717 | ///without guard digits, but we know of none.</remarks>
|
---|
718 | void sgesvd (char jobz, int m, int n, float [] a, int lda,
|
---|
719 | float [] s, float [] u, int ldu,
|
---|
720 | float [] vt, int ldvt, ref int info);
|
---|
721 |
|
---|
722 |
|
---|
723 | /// <summary>
|
---|
724 | /// singular value decomposition, older version, less memory needed
|
---|
725 | /// </summary>
|
---|
726 | /// <param name="jobz">Specifies options for computing all or part of the matrix U
|
---|
727 | /// <list type="bullet"><item>= 'A': all M columns of U and all N rows of V**T are
|
---|
728 | ///returned in the arrays U and VT</item>
|
---|
729 | /// <item> = 'S': the first min(M,N) columns of U and the first
|
---|
730 | /// min(M,N) rows of V**T are returned in the arrays U
|
---|
731 | /// and VT</item>
|
---|
732 | /// <item> = 'O': If M >= N, the first N columns of U are overwritten
|
---|
733 | /// on the array A and all rows of V**T are returned in
|
---|
734 | /// the array VT. Otherwise, all columns of U are returned in the
|
---|
735 | /// array U and the first M rows of V**T are overwritten
|
---|
736 | /// in the array VT</item>
|
---|
737 | /// <item> = 'N': no columns of U or rows of V**T are computed.</item>
|
---|
738 | /// </list>
|
---|
739 | /// </param>
|
---|
740 | /// <param name="m">The number of rows of the input matrix A. M greater or equal to 0.</param>
|
---|
741 | /// <param name="n">The number of columns of the input matrix A. N greater or equal to 0</param>
|
---|
742 | /// <param name="a">On entry, the M-by-N matrix A.
|
---|
743 | /// On exit, <list><item>
|
---|
744 | /// if JOBZ = 'O', A is overwritten with the first N columns
|
---|
745 | /// of U (the left singular vectors, stored
|
---|
746 | /// columnwise) if M >= N;
|
---|
747 | /// A is overwritten with the first M rows
|
---|
748 | /// of V**T (the right singular vectors, stored
|
---|
749 | /// rowwise) otherwise.</item>
|
---|
750 | /// <item>if JOBZ .ne. 'O', the contents of A are destroyed.</item></list></param>
|
---|
751 | /// <param name="lda">The leading dimension of the array A. LDA ge max(1,M).</param>
|
---|
752 | /// <param name="s">array, dimension (min(M,N)). The singular values of A, sorted so that S(i) ge S(i+1)</param>
|
---|
753 | /// <param name="u">array, dimension (LDU,UCOL)
|
---|
754 | /// UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
|
---|
755 | /// UCOL = min(M,N) if JOBZ = 'S'.
|
---|
756 | /// If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
|
---|
757 | /// orthogonal matrix U;
|
---|
758 | /// if JOBZ = 'S', U contains the first min(M,N) columns of U
|
---|
759 | /// (the left singular vectors, stored columnwise);
|
---|
760 | /// if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.</param>
|
---|
761 | /// <param name="ldu">The leading dimension of the array U. LDU >= 1; if
|
---|
762 | /// JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M</param>
|
---|
763 | /// <param name="vt">array, dimension (LDVT,N). If JOBZ = 'A' or JOBZ = 'O' and
|
---|
764 | /// M >= N, VT contains the N-by-N orthogonal matrix V**T; if JOBZ = 'S',
|
---|
765 | /// VT contains the first min(M,N) rows of V**T
|
---|
766 | /// (the right singular vectors, stored rowwise); if JOBZ = 'O' and M < N,
|
---|
767 | /// or JOBZ = 'N', VT is not referenced</param>
|
---|
768 | /// <param name="ldvt">The leading dimension of the array VT. LDVT > = 1;
|
---|
769 | /// if JOBZ = 'A' or JOBZ = 'O' and M > = N, LDVT >= N;
|
---|
770 | /// if JOBZ = 'S', LDVT > min(M,N).</param>
|
---|
771 | /// <param name="info">
|
---|
772 | /// <list>
|
---|
773 | /// <item> 0: successful exit.</item>
|
---|
774 | /// <item> lower 0: if INFO = -i, the i-th argument had an illegal value.</item>
|
---|
775 | /// <item> greater 0: DBDSDC did not converge, updating process failed.</item>
|
---|
776 | /// </list>
|
---|
777 | /// </param>
|
---|
778 | /// <remarks>(From the lapack manual):DGESDD computes the singular value decomposition (SVD) of a real
|
---|
779 | ///M-by-N matrix A, optionally computing the left and right singular
|
---|
780 | ///vectors. If singular vectors are desired, it uses a
|
---|
781 | ///divide-and-conquer algorithm.
|
---|
782 | ///The SVD is written
|
---|
783 | /// <br>A = U * SIGMA * transpose(V)</br>
|
---|
784 | ///where SIGMA is an M-by-N matrix which is zero except for its
|
---|
785 | ///min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
|
---|
786 | ///V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
|
---|
787 | ///are the singular values of A; they are real and non-negative, and
|
---|
788 | ///are returned in descending order. The first min(m,n) columns of
|
---|
789 | ///U and V are the left and right singular vectors of A.
|
---|
790 | ///Note that the routine returns VT = V**T, not V.
|
---|
791 | ///The divide and conquer algorithm makes very mild assumptions about
|
---|
792 | ///floating point arithmetic. It will work on machines with a guard
|
---|
793 | ///digit in add/subtract, or on those binary machines without guard
|
---|
794 | ///digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
|
---|
795 | ///Cray-2. It could conceivably fail on hexadecimal or decimal machines
|
---|
796 | ///without guard digits, but we know of none.</remarks>
|
---|
797 | void cgesvd (char jobz, int m, int n, fcomplex [] a, int lda,
|
---|
798 | float [] s, fcomplex [] u, int ldu,
|
---|
799 | fcomplex [] vt, int ldvt, ref int info);
|
---|
800 |
|
---|
801 |
|
---|
802 | /// <summary>
|
---|
803 | /// singular value decomposition, older version, less memory needed
|
---|
804 | /// </summary>
|
---|
805 | /// <param name="jobz">Specifies options for computing all or part of the matrix U
|
---|
806 | /// <list type="bullet"><item>= 'A': all M columns of U and all N rows of V**T are
|
---|
807 | ///returned in the arrays U and VT</item>
|
---|
808 | /// <item> = 'S': the first min(M,N) columns of U and the first
|
---|
809 | /// min(M,N) rows of V**T are returned in the arrays U
|
---|
810 | /// and VT</item>
|
---|
811 | /// <item> = 'O': If M >= N, the first N columns of U are overwritten
|
---|
812 | /// on the array A and all rows of V**T are returned in
|
---|
813 | /// the array VT. Otherwise, all columns of U are returned in the
|
---|
814 | /// array U and the first M rows of V**T are overwritten
|
---|
815 | /// in the array VT</item>
|
---|
816 | /// <item> = 'N': no columns of U or rows of V**T are computed.</item>
|
---|
817 | /// </list>
|
---|
818 | /// </param>
|
---|
819 | /// <param name="m">The number of rows of the input matrix A. M greater or equal to 0.</param>
|
---|
820 | /// <param name="n">The number of columns of the input matrix A. N greater or equal to 0</param>
|
---|
821 | /// <param name="a">On entry, the M-by-N matrix A.
|
---|
822 | /// On exit, <list><item>
|
---|
823 | /// if JOBZ = 'O', A is overwritten with the first N columns
|
---|
824 | /// of U (the left singular vectors, stored
|
---|
825 | /// columnwise) if M >= N;
|
---|
826 | /// A is overwritten with the first M rows
|
---|
827 | /// of V**T (the right singular vectors, stored
|
---|
828 | /// rowwise) otherwise.</item>
|
---|
829 | /// <item>if JOBZ .ne. 'O', the contents of A are destroyed.</item></list></param>
|
---|
830 | /// <param name="lda">The leading dimension of the array A. LDA ge max(1,M).</param>
|
---|
831 | /// <param name="s">array, dimension (min(M,N)). The singular values of A, sorted so that S(i) ge S(i+1)</param>
|
---|
832 | /// <param name="u">array, dimension (LDU,UCOL)
|
---|
833 | /// UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
|
---|
834 | /// UCOL = min(M,N) if JOBZ = 'S'.
|
---|
835 | /// If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
|
---|
836 | /// orthogonal matrix U;
|
---|
837 | /// if JOBZ = 'S', U contains the first min(M,N) columns of U
|
---|
838 | /// (the left singular vectors, stored columnwise);
|
---|
839 | /// if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.</param>
|
---|
840 | /// <param name="ldu">The leading dimension of the array U. LDU >= 1; if
|
---|
841 | /// JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M</param>
|
---|
842 | /// <param name="vt">array, dimension (LDVT,N). If JOBZ = 'A' or JOBZ = 'O' and
|
---|
843 | /// M >= N, VT contains the N-by-N orthogonal matrix V**T; if JOBZ = 'S',
|
---|
844 | /// VT contains the first min(M,N) rows of V**T
|
---|
845 | /// (the right singular vectors, stored rowwise); if JOBZ = 'O' and M < N,
|
---|
846 | /// or JOBZ = 'N', VT is not referenced</param>
|
---|
847 | /// <param name="ldvt">The leading dimension of the array VT. LDVT > = 1;
|
---|
848 | /// if JOBZ = 'A' or JOBZ = 'O' and M > = N, LDVT >= N;
|
---|
849 | /// if JOBZ = 'S', LDVT > min(M,N).</param>
|
---|
850 | /// <param name="info">
|
---|
851 | /// <list>
|
---|
852 | /// <item> 0: successful exit.</item>
|
---|
853 | /// <item> lower 0: if INFO = -i, the i-th argument had an illegal value.</item>
|
---|
854 | /// <item> greater 0: DBDSDC did not converge, updating process failed.</item>
|
---|
855 | /// </list>
|
---|
856 | /// </param>
|
---|
857 | /// <remarks>(From the lapack manual):DGESDD computes the singular value decomposition (SVD) of a real
|
---|
858 | ///M-by-N matrix A, optionally computing the left and right singular
|
---|
859 | ///vectors. If singular vectors are desired, it uses a
|
---|
860 | ///divide-and-conquer algorithm.
|
---|
861 | ///The SVD is written
|
---|
862 | /// <br>A = U * SIGMA * transpose(V)</br>
|
---|
863 | ///where SIGMA is an M-by-N matrix which is zero except for its
|
---|
864 | ///min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
|
---|
865 | ///V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
|
---|
866 | ///are the singular values of A; they are real and non-negative, and
|
---|
867 | ///are returned in descending order. The first min(m,n) columns of
|
---|
868 | ///U and V are the left and right singular vectors of A.
|
---|
869 | ///Note that the routine returns VT = V**T, not V.
|
---|
870 | ///The divide and conquer algorithm makes very mild assumptions about
|
---|
871 | ///floating point arithmetic. It will work on machines with a guard
|
---|
872 | ///digit in add/subtract, or on those binary machines without guard
|
---|
873 | ///digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
|
---|
874 | ///Cray-2. It could conceivably fail on hexadecimal or decimal machines
|
---|
875 | ///without guard digits, but we know of none.</remarks>
|
---|
876 | void zgesvd (char jobz, int m, int n, complex [] a, int lda,
|
---|
877 | double [] s, complex [] u, int ldu,
|
---|
878 | complex [] vt, int ldvt, ref int info);
|
---|
879 | #endregion
|
---|
880 |
|
---|
881 | #region ?POTRF - cholesky factorization
|
---|
882 | /// <summary>
|
---|
883 | /// cholesky factorization
|
---|
884 | /// </summary>
|
---|
885 | void dpotrf (char uplo, int n, double [] A, int lda, ref int info);
|
---|
886 | /// <summary>
|
---|
887 | /// cholesky factorization
|
---|
888 | /// </summary>
|
---|
889 | void spotrf (char uplo, int n, float [] A, int lda, ref int info);
|
---|
890 |
|
---|
891 | /// <summary>
|
---|
892 | /// cholesky factorization
|
---|
893 | /// </summary>
|
---|
894 | void cpotrf (char uplo, int n, fcomplex [] A, int lda, ref int info);
|
---|
895 |
|
---|
896 | /// <summary>
|
---|
897 | /// cholesky factorization
|
---|
898 | /// </summary>
|
---|
899 | void zpotrf (char uplo, int n, complex [] A, int lda, ref int info);
|
---|
900 | #endregion
|
---|
901 |
|
---|
902 | #region ?POTRI - inverse via cholesky factorization
|
---|
903 | /// <summary>
|
---|
904 | /// matrix inverse via cholesky factorization (?potrf)
|
---|
905 | /// </summary>
|
---|
906 | void dpotri (char uplo, int n, double [] A, int lda,ref int info);
|
---|
907 | /// <summary>
|
---|
908 | /// matrix inverse via cholesky factorization (?potrf)
|
---|
909 | /// </summary>
|
---|
910 | void spotri (char uplo, int n, float [] A, int lda,ref int info);
|
---|
911 |
|
---|
912 | /// <summary>
|
---|
913 | /// matrix inverse via cholesky factorization (?potrf)
|
---|
914 | /// </summary>
|
---|
915 | void cpotri (char uplo, int n, fcomplex [] A, int lda,ref int info);
|
---|
916 |
|
---|
917 | /// <summary>
|
---|
918 | /// matrix inverse via cholesky factorization (?potrf)
|
---|
919 | /// </summary>
|
---|
920 | void zpotri (char uplo, int n, complex [] A, int lda,ref int info);
|
---|
921 |
|
---|
922 | #endregion
|
---|
923 |
|
---|
924 | #region ?POTRS - Solve via cholesky factors
|
---|
925 | /// <summary>
|
---|
926 | /// solve equation system via cholesky factorization (?potrs)
|
---|
927 | /// </summary>
|
---|
928 | void dpotrs (char uplo, int n, int nrhs, double [] A, int lda, double [] B, int ldb, ref int info);
|
---|
929 | /// <summary>
|
---|
930 | /// solve equation system via cholesky factorization (?potrs)
|
---|
931 | /// </summary>
|
---|
932 | void spotrs (char uplo, int n, int nrhs, float [] A, int lda, float [] B, int ldb, ref int info);
|
---|
933 | /// <summary>
|
---|
934 | /// solve equation system via cholesky factorization (?potrs)
|
---|
935 | /// </summary>
|
---|
936 | void cpotrs (char uplo, int n, int nrhs, fcomplex [] A, int lda, fcomplex [] B, int ldb, ref int info);
|
---|
937 | /// <summary>
|
---|
938 | /// solve equation system via cholesky factorization (?potrs)
|
---|
939 | /// </summary>
|
---|
940 | void zpotrs (char uplo, int n, int nrhs, complex [] A, int lda, complex [] B, int ldb, ref int info);
|
---|
941 | #endregion
|
---|
942 |
|
---|
943 | #region ?getrf - LU factorization
|
---|
944 | /// <summary>
|
---|
945 | /// LU factorization of general matrix
|
---|
946 | /// </summary>
|
---|
947 | void dgetrf (int M, int N, double [] A, int LDA, int [] IPIV, ref int info);
|
---|
948 | /// <summary>
|
---|
949 | /// LU factorization of general matrix
|
---|
950 | /// </summary>
|
---|
951 | void sgetrf (int M, int N, float [] A, int LDA, int [] IPIV, ref int info);
|
---|
952 |
|
---|
953 | /// <summary>
|
---|
954 | /// LU factorization of general matrix
|
---|
955 | /// </summary>
|
---|
956 | void cgetrf (int M, int N, fcomplex [] A, int LDA, int [] IPIV, ref int info);
|
---|
957 |
|
---|
958 | /// <summary>
|
---|
959 | /// LU factorization of general matrix
|
---|
960 | /// </summary>
|
---|
961 | void zgetrf (int M, int N, complex [] A, int LDA, int [] IPIV, ref int info);
|
---|
962 | #endregion
|
---|
963 |
|
---|
964 | #region ?getri - inverse via LU factorization
|
---|
965 | /// <summary>
|
---|
966 | /// inverse of a matrix via LU factorization
|
---|
967 | /// </summary>
|
---|
968 | void dgetri (int N, double [] A, int LDA, int [] IPIV, ref int info);
|
---|
969 | /// <summary>
|
---|
970 | /// inverse of a matrix via LU factorization
|
---|
971 | /// </summary>
|
---|
972 | void sgetri (int N, float [] A, int LDA, int [] IPIV, ref int info);
|
---|
973 |
|
---|
974 | /// <summary>
|
---|
975 | /// inverse of a matrix via LU factorization
|
---|
976 | /// </summary>
|
---|
977 | void cgetri (int N, fcomplex [] A, int LDA, int [] IPIV, ref int info);
|
---|
978 |
|
---|
979 | /// <summary>
|
---|
980 | /// inverse of a matrix via LU factorization
|
---|
981 | /// </summary>
|
---|
982 | void zgetri (int N, complex [] A, int LDA, int [] IPIV, ref int info);
|
---|
983 | #endregion
|
---|
984 |
|
---|
985 | #region ORGQR
|
---|
986 | /// <summary>
|
---|
987 | /// QR factor extraction
|
---|
988 | /// </summary>
|
---|
989 | void dorgqr (int M, int N, int K, double [] A, int lda, double [] tau, ref int info);
|
---|
990 | /// <summary>
|
---|
991 | /// QR factor extraction
|
---|
992 | /// </summary>
|
---|
993 | void sorgqr (int M, int N, int K, float [] A, int lda, float [] tau, ref int info);
|
---|
994 | /// <summary>
|
---|
995 | /// QR factor extraction
|
---|
996 | /// </summary>
|
---|
997 | void cungqr (int M, int N, int K, fcomplex [] A, int lda, fcomplex [] tau, ref int info);
|
---|
998 | /// <summary>
|
---|
999 | /// QR factor extraction
|
---|
1000 | /// </summary>
|
---|
1001 | void zungqr (int M, int N, int K, complex [] A, int lda, complex [] tau, ref int info);
|
---|
1002 | #endregion
|
---|
1003 |
|
---|
1004 | #region ?geqrf - QR factorization
|
---|
1005 | /// <summary>
|
---|
1006 | /// QR factorization
|
---|
1007 | /// </summary>
|
---|
1008 | void dgeqrf (int M, int N, double [] A, int lda, double [] tau, ref int info);
|
---|
1009 | /// <summary>
|
---|
1010 | /// QR factorization
|
---|
1011 | /// </summary>
|
---|
1012 | void sgeqrf (int M, int N, float [] A, int lda, float [] tau, ref int info);
|
---|
1013 | /// <summary>
|
---|
1014 | /// QR factorization
|
---|
1015 | /// </summary>
|
---|
1016 | void cgeqrf (int M, int N, fcomplex [] A, int lda, fcomplex [] tau, ref int info);
|
---|
1017 | /// <summary>
|
---|
1018 | /// QR factorization
|
---|
1019 | /// </summary>
|
---|
1020 | void zgeqrf (int M, int N, complex [] A, int lda, complex [] tau, ref int info);
|
---|
1021 | #endregion
|
---|
1022 |
|
---|
1023 | #region GEQP3
|
---|
1024 | /// <summary>
|
---|
1025 | /// QR factorisation with column pivoting
|
---|
1026 | /// </summary>
|
---|
1027 | void dgeqp3 (int M, int N, double [] A, int LDA, int [] JPVT, double [] tau, ref int info);
|
---|
1028 | /// <summary>
|
---|
1029 | /// QR factorisation with column pivoting
|
---|
1030 | /// </summary>
|
---|
1031 | void sgeqp3 (int M, int N, float [] A, int LDA, int [] JPVT, float [] tau, ref int info);
|
---|
1032 | /// <summary>
|
---|
1033 | /// QR factorisation with column pivoting
|
---|
1034 | /// </summary>
|
---|
1035 | void cgeqp3 (int M, int N, fcomplex [] A, int LDA, int [] JPVT, fcomplex [] tau, ref int info);
|
---|
1036 | /// <summary>
|
---|
1037 | /// QR factorisation with column pivoting
|
---|
1038 | /// </summary>
|
---|
1039 | void zgeqp3 (int M, int N, complex [] A, int LDA, int [] JPVT, complex [] tau, ref int info);
|
---|
1040 | #endregion
|
---|
1041 |
|
---|
1042 | #region ?ormqr - mmult of QR factorization result
|
---|
1043 | /// <summary>
|
---|
1044 | /// multipliation for general matrix with QR decomposition factor
|
---|
1045 | /// </summary>
|
---|
1046 | void dormqr (char side, char trans, int m, int n, int k, double [] A, int lda, double [] tau, double [] C, int LDC, ref int info);
|
---|
1047 | /// <summary>
|
---|
1048 | /// multipliation for general matrix with QR decomposition factor
|
---|
1049 | /// </summary>
|
---|
1050 | void sormqr (char side, char trans, int m, int n, int k, float [] A, int lda, float [] tau, float [] C, int LDC, ref int info);
|
---|
1051 |
|
---|
1052 | #endregion
|
---|
1053 |
|
---|
1054 | #region DTRTRS
|
---|
1055 | /// <summary>
|
---|
1056 | /// Solve triangular system of linear equations (forward-/ backward substitution)
|
---|
1057 | /// </summary>
|
---|
1058 | /// <param name="uplo">'U': A is upper triangular, 'L': A is lower triangular</param>
|
---|
1059 | /// <param name="transA">'N': A * X = B (No transpose); 'T': A**T * X = B (Transpose), 'T': A**T * X = B (Transpose)</param>
|
---|
1060 | /// <param name="diag">'N' arbitrary diagonal elements, 'U' unit diagonal</param>
|
---|
1061 | /// <param name="N">order of A</param>
|
---|
1062 | /// <param name="nrhs">number of right hand sides - columns of matrix B</param>
|
---|
1063 | /// <param name="A">square matrix A</param>
|
---|
1064 | /// <param name="LDA">spacing between columns for A</param>
|
---|
1065 | /// <param name="B">(input/output) on input: right hand side, on output: solution x </param>
|
---|
1066 | /// <param name="LDB">spacing between columns for B</param>
|
---|
1067 | /// <param name="info">(output) 0: success; < 0: illigal argument, > 0: A is sinular having a zero on the i-th diagonal element. No solution will be computed than. </param>
|
---|
1068 | void dtrtrs (char uplo, char transA, char diag, int N, int nrhs, IntPtr A, int LDA, IntPtr B, int LDB, ref int info);
|
---|
1069 | /// <summary>
|
---|
1070 | /// Solve triangular system of linear equations (forward-/ backward substitution)
|
---|
1071 | /// </summary>
|
---|
1072 | /// <param name="uplo">'U': A is upper triangular, 'L': A is lower triangular</param>
|
---|
1073 | /// <param name="transA">'N': A * X = B (No transpose); 'T': A**T * X = B (Transpose), 'T': A**T * X = B (Transpose)</param>
|
---|
1074 | /// <param name="diag">'N' arbitrary diagonal elements, 'U' unit diagonal</param>
|
---|
1075 | /// <param name="N">order of A</param>
|
---|
1076 | /// <param name="nrhs">number of right hand sides - columns of matrix B</param>
|
---|
1077 | /// <param name="A">square matrix A</param>
|
---|
1078 | /// <param name="LDA">spacing between columns for A</param>
|
---|
1079 | /// <param name="B">(input/output) on input: right hand side, on output: solution x </param>
|
---|
1080 | /// <param name="LDB">spacing between columns for B</param>
|
---|
1081 | /// <param name="info">(output) 0: success; < 0: illigal argument, > 0: A is sinular having a zero on the i-th diagonal element. No solution will be computed than. </param>
|
---|
1082 | void strtrs (char uplo, char transA, char diag, int N, int nrhs, IntPtr A, int LDA, IntPtr B, int LDB, ref int info);
|
---|
1083 | /// <summary>
|
---|
1084 | /// Solve triangular system of linear equations (forward-/ backward substitution)
|
---|
1085 | /// </summary>
|
---|
1086 | /// <param name="uplo">'U': A is upper triangular, 'L': A is lower triangular</param>
|
---|
1087 | /// <param name="transA">'N': A * X = B (No transpose); 'T': A**T * X = B (Transpose), 'T': A**T * X = B (Transpose)</param>
|
---|
1088 | /// <param name="diag">'N' arbitrary diagonal elements, 'U' unit diagonal</param>
|
---|
1089 | /// <param name="N">order of A</param>
|
---|
1090 | /// <param name="nrhs">number of right hand sides - columns of matrix B</param>
|
---|
1091 | /// <param name="A">square matrix A</param>
|
---|
1092 | /// <param name="LDA">spacing between columns for A</param>
|
---|
1093 | /// <param name="B">(input/output) on input: right hand side, on output: solution x </param>
|
---|
1094 | /// <param name="LDB">spacing between columns for B</param>
|
---|
1095 | /// <param name="info">(output) 0: success; < 0: illigal argument, > 0: A is sinular having a zero on the i-th diagonal element. No solution will be computed than. </param>
|
---|
1096 | void ctrtrs (char uplo, char transA, char diag, int N, int nrhs, IntPtr A, int LDA, IntPtr B, int LDB, ref int info);
|
---|
1097 | /// <summary>
|
---|
1098 | /// Solve triangular system of linear equations (forward-/ backward substitution)
|
---|
1099 | /// </summary>
|
---|
1100 | /// <param name="uplo">'U': A is upper triangular, 'L': A is lower triangular</param>
|
---|
1101 | /// <param name="transA">'N': A * X = B (No transpose); 'T': A**T * X = B (Transpose), 'T': A**T * X = B (Transpose)</param>
|
---|
1102 | /// <param name="diag">'N' arbitrary diagonal elements, 'U' unit diagonal</param>
|
---|
1103 | /// <param name="N">order of A</param>
|
---|
1104 | /// <param name="nrhs">number of right hand sides - columns of matrix B</param>
|
---|
1105 | /// <param name="A">square matrix A</param>
|
---|
1106 | /// <param name="LDA">spacing between columns for A</param>
|
---|
1107 | /// <param name="B">(input/output) on input: right hand side, on output: solution x </param>
|
---|
1108 | /// <param name="LDB">spacing between columns for B</param>
|
---|
1109 | /// <param name="info">(output) 0: success; < 0: illigal argument, > 0: A is sinular having a zero on the i-th diagonal element. No solution will be computed than. </param>
|
---|
1110 | void ztrtrs (char uplo, char transA, char diag, int N, int nrhs, IntPtr A, int LDA, IntPtr B, int LDB, ref int info);
|
---|
1111 | #endregion
|
---|
1112 |
|
---|
1113 | #region ?GETRS
|
---|
1114 | /// <summary>
|
---|
1115 | /// solve system of linear equations by triangular matrices
|
---|
1116 | /// </summary>
|
---|
1117 | /// <param name="trans">transpose before work?</param>
|
---|
1118 | /// <param name="N">number rows</param>
|
---|
1119 | /// <param name="NRHS">number right hand sides</param>
|
---|
1120 | /// <param name="A">matrix A</param>
|
---|
1121 | /// <param name="LDA">spacing between columns: A</param>
|
---|
1122 | /// <param name="IPIV">pivoting indices</param>
|
---|
1123 | /// <param name="B">matrix B</param>
|
---|
1124 | /// <param name="LDB">spacing between columns: B</param>
|
---|
1125 | /// <param name="info">success info</param>
|
---|
1126 | void dgetrs (char trans, int N, int NRHS, double [] A, int LDA, int [] IPIV, double [] B, int LDB, ref int info);
|
---|
1127 | /// <summary>
|
---|
1128 | /// solve system of linear equations by triangular matrices
|
---|
1129 | /// </summary>
|
---|
1130 | /// <param name="trans">transpose before work?</param>
|
---|
1131 | /// <param name="N">number rows</param>
|
---|
1132 | /// <param name="NRHS">number right hand sides</param>
|
---|
1133 | /// <param name="A">matrix A</param>
|
---|
1134 | /// <param name="LDA">spacing between columns: A</param>
|
---|
1135 | /// <param name="IPIV">pivoting indices</param>
|
---|
1136 | /// <param name="B">matrix B</param>
|
---|
1137 | /// <param name="LDB">spacing between columns: B</param>
|
---|
1138 | /// <param name="info">success info</param>
|
---|
1139 | void sgetrs (char trans, int N, int NRHS, float [] A, int LDA, int [] IPIV, float [] B, int LDB, ref int info);
|
---|
1140 | /// <summary>
|
---|
1141 | /// solve system of linear equations by triangular matrices
|
---|
1142 | /// </summary>
|
---|
1143 | /// <param name="trans">transpose before work?</param>
|
---|
1144 | /// <param name="N">number rows</param>
|
---|
1145 | /// <param name="NRHS">number right hand sides</param>
|
---|
1146 | /// <param name="A">matrix A</param>
|
---|
1147 | /// <param name="LDA">spacing between columns: A</param>
|
---|
1148 | /// <param name="IPIV">pivoting indices</param>
|
---|
1149 | /// <param name="B">matrix B</param>
|
---|
1150 | /// <param name="LDB">spacing between columns: B</param>
|
---|
1151 | /// <param name="info">success info</param>
|
---|
1152 | void cgetrs (char trans, int N, int NRHS, fcomplex [] A, int LDA, int [] IPIV, fcomplex [] B, int LDB, ref int info);
|
---|
1153 | /// <summary>
|
---|
1154 | /// solve system of linear equations by triangular matrices
|
---|
1155 | /// </summary>
|
---|
1156 | /// <param name="trans">transpose before work?</param>
|
---|
1157 | /// <param name="N">number rows</param>
|
---|
1158 | /// <param name="NRHS">number right hand sides</param>
|
---|
1159 | /// <param name="A">matrix A</param>
|
---|
1160 | /// <param name="LDA">spacing between columns: A</param>
|
---|
1161 | /// <param name="IPIV">pivoting indices</param>
|
---|
1162 | /// <param name="B">matrix B</param>
|
---|
1163 | /// <param name="LDB">spacing between columns: B</param>
|
---|
1164 | /// <param name="info">success info</param>
|
---|
1165 | void zgetrs (char trans, int N, int NRHS, complex [] A, int LDA, int [] IPIV, complex [] B, int LDB, ref int info);
|
---|
1166 | #endregion
|
---|
1167 |
|
---|
1168 | #region ?GELSD - least square solution, SVD - divide & conquer
|
---|
1169 | void dgelsd (int m, int n, int nrhs, double[] A, int lda, double[] B, int ldb, double[] S, double RCond, ref int rank, ref int info);
|
---|
1170 | void sgelsd (int m, int n, int nrhs, float[] A, int lda, float[] B, int ldb, float[] S, float RCond, ref int rank, ref int info);
|
---|
1171 | void cgelsd (int m, int n, int nrhs, fcomplex[] A, int lda, fcomplex[] B, int ldb, float[] S, float RCond, ref int rank, ref int info);
|
---|
1172 | void zgelsd (int m, int n, int nrhs, complex[] A, int lda, complex[] B, int ldb, double[] S, double RCond, ref int rank, ref int info);
|
---|
1173 | #endregion
|
---|
1174 |
|
---|
1175 | #region ?GELSY - least square solution, QRP
|
---|
1176 | void dgelsy (int m,int n,int nrhs, double[] A,int lda, double[] B,int ldb, int[] JPVT0, double RCond, ref int rank, ref int info);
|
---|
1177 | void sgelsy (int m,int n,int nrhs, float[] A,int lda, float[] B,int ldb, int[] JPVT0, float RCond, ref int rank, ref int info);
|
---|
1178 | void cgelsy (int m,int n,int nrhs, fcomplex[] A,int lda, fcomplex[] B,int ldb, int[] JPVT0, float RCond, ref int rank, ref int info);
|
---|
1179 | void zgelsy (int m,int n,int nrhs, complex[] A,int lda, complex[] B,int ldb, int[] JPVT0, double RCond, ref int rank, ref int info);
|
---|
1180 | #endregion
|
---|
1181 |
|
---|
1182 | #region ?GEEVX - eigenvectors & -values, nonsymmetric A
|
---|
1183 | void dgeevx (char balance, char jobvl, char jobvr, char sense, int n, double[] A, int lda, double[] wr, double[] wi, double[] vl, int ldvl, double[] vr, int ldvr, ref int ilo, ref int ihi, double[] scale, ref double abnrm, double[] rconde, double[] rcondv, ref int info);
|
---|
1184 | void sgeevx (char balance, char jobvl, char jobvr, char sense, int n, float[] A, int lda, float[] wr, float[] wi, float[] vl, int ldvl, float[] vr, int ldvr, ref int ilo, ref int ihi, float[] scale, ref float abnrm, float[] rconde, float[] rcondv, ref int info);
|
---|
1185 | void cgeevx (char balance, char jobvl, char jobvr, char sense, int n, fcomplex[] A, int lda, fcomplex[] w, fcomplex[] vl, int ldvl, fcomplex[] vr, int ldvr, ref int ilo, ref int ihi, float[] scale, ref float abnrm, float[] rconde, float[] rcondv, ref int info);
|
---|
1186 | void zgeevx (char balance, char jobvl, char jobvr, char sense, int n, complex[] A, int lda, complex[] w, complex[] vl, int ldvl, complex[] vr, int ldvr, ref int ilo, ref int ihi, double[] scale, ref double abnrm, double[] rconde, double[] rcondv, ref int info);
|
---|
1187 | #endregion
|
---|
1188 |
|
---|
1189 | #region ?GEEVR - eigenvectors & -values, symmetric/hermitian A
|
---|
1190 | void dsyevr (char jobz, char range, char uplo, int n, double [] A, int lda, double vl, double vu, int il, int iu, double abstol, ref int m, double[] w, double [] z, int ldz, int[] isuppz, ref int info);
|
---|
1191 | void ssyevr (char jobz, char range, char uplo, int n, float [] A, int lda, float vl, float vu, int il, int iu, float abstol, ref int m, float [] w, float [] z, int ldz, int[] isuppz, ref int info);
|
---|
1192 | void cheevr (char jobz, char range, char uplo, int n, fcomplex[] A, int lda, float vl, float vu, int il, int iu, float abstol, ref int m, float [] w, fcomplex[] z, int ldz, int[] isuppz, ref int info);
|
---|
1193 | void zheevr (char jobz, char range, char uplo, int n, complex [] A, int lda, double vl, double vu, int il, int iu, double abstol, ref int m, double[] w, complex [] z, int ldz, int[] isuppz, ref int info);
|
---|
1194 | #endregion
|
---|
1195 |
|
---|
1196 | #region ?SYGV - eigenvectors & -values, symmetric/hermitian A and B, pos.def.B
|
---|
1197 | void dsygv (int itype, char jobz, char uplo, int n, double [] A, int lda, double [] B, int ldb, double [] w, ref int info);
|
---|
1198 | void ssygv (int itype, char jobz, char uplo, int n, float [] A, int lda, float [] B, int ldb, float [] w, ref int info);
|
---|
1199 | void chegv (int itype, char jobz, char uplo, int n, fcomplex[] A, int lda, fcomplex[] B, int ldb, float [] w, ref int info);
|
---|
1200 | void zhegv (int itype, char jobz, char uplo, int n, complex [] A, int lda, complex [] B, int ldb, double [] w, ref int info);
|
---|
1201 | #endregion
|
---|
1202 |
|
---|
1203 | }
|
---|
1204 | }
|
---|