1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | #pragma warning disable 162
|
---|
41 | using System;
|
---|
42 | using System.Collections.Generic;
|
---|
43 | using System.Text;
|
---|
44 | using System.Runtime.InteropServices;
|
---|
45 |
|
---|
46 |
|
---|
47 |
|
---|
48 | namespace ILNumerics {
|
---|
49 | /// <summary>
|
---|
50 | /// Floating point complex value data type of float (single) precision
|
---|
51 | /// </summary>
|
---|
52 | /// <remarks>This class extends the system value types for real numbers to complex float
|
---|
53 | /// values. Besides the publicly available members 'real' and 'imag' it provides all the
|
---|
54 | /// basis functionality the floating point System.double brings (abs, log, sqrt, tan etc.) for
|
---|
55 | /// float precision complex,
|
---|
56 | /// as well as it overrides the basic unary and binary operators for all common system value
|
---|
57 | /// types including rarely used types (e.g. UInt16). This includes the basic numerical operations
|
---|
58 | /// like '+','-','/','*' and the relational operators: '==','>','>=' etc. Also there are some
|
---|
59 | /// explicit and some implicit casting operators from / to fcomplex values into system
|
---|
60 | /// value types. </remarks>
|
---|
61 | [Serializable]
|
---|
62 | [StructLayout(LayoutKind.Sequential)]
|
---|
63 | public struct fcomplex : IEquatable<fcomplex> {
|
---|
64 | /// <summary>
|
---|
65 | /// Real part of this complex number
|
---|
66 | /// </summary>
|
---|
67 | public float real;
|
---|
68 | /// <summary>
|
---|
69 | /// Imaginary part of this complex number
|
---|
70 | /// </summary>
|
---|
71 | public float imag;
|
---|
72 | /// <summary>
|
---|
73 | /// Imaginary unit
|
---|
74 | /// </summary>
|
---|
75 | public static readonly fcomplex i = new fcomplex(0.0f,1.0f);
|
---|
76 |
|
---|
77 | /// <summary>
|
---|
78 | /// Construct new float complex number
|
---|
79 | /// </summary>
|
---|
80 | /// <param name="real">Real part</param>
|
---|
81 | /// <param name="imag">Imaginary part</param>
|
---|
82 | public fcomplex(float real, float imag) {
|
---|
83 | this.real = real;
|
---|
84 | this.imag = imag;
|
---|
85 | }
|
---|
86 |
|
---|
87 | /// <summary>
|
---|
88 | /// Complex conjugate
|
---|
89 | /// </summary>
|
---|
90 | public fcomplex conj {
|
---|
91 | get{
|
---|
92 | return new fcomplex(real,imag * (-1.0f));
|
---|
93 | }
|
---|
94 | }
|
---|
95 |
|
---|
96 | /// <summary>
|
---|
97 | /// Positive infinity for real and imag part of complex value
|
---|
98 | /// </summary>
|
---|
99 | public static fcomplex INF {
|
---|
100 | get {
|
---|
101 | return new fcomplex(
|
---|
102 | float.PositiveInfinity,
|
---|
103 | float.PositiveInfinity
|
---|
104 | );
|
---|
105 | }
|
---|
106 | }
|
---|
107 |
|
---|
108 | /// <summary>
|
---|
109 | /// New fcomplex, real and imaginary parts are zero
|
---|
110 | /// </summary>
|
---|
111 | public static fcomplex Zero {
|
---|
112 | get {
|
---|
113 | return new fcomplex(0f,0f);
|
---|
114 | }
|
---|
115 | }
|
---|
116 |
|
---|
117 | /// <summary>
|
---|
118 | /// fcomplex quantity, marked as being "not a number"
|
---|
119 | /// </summary>
|
---|
120 | public static fcomplex NaN {
|
---|
121 | get {
|
---|
122 | return new fcomplex(float.NaN,float.NaN);
|
---|
123 | }
|
---|
124 | }
|
---|
125 |
|
---|
126 | /// <summary>
|
---|
127 | /// Are obj's real and imaginary part identical to the real and imaginary parts of this fcomplex
|
---|
128 | /// </summary>
|
---|
129 | /// <param name="obj">fcomplex object to determine the equality for</param>
|
---|
130 | /// <returns>true if obj is of fcomplex type and its real and imag part has the same
|
---|
131 | /// values as the real and imaginary part of this array.</returns>
|
---|
132 | public override bool Equals(object obj) {
|
---|
133 | if (obj is fcomplex && ((fcomplex)obj) == this)
|
---|
134 | return true;
|
---|
135 | return false;
|
---|
136 | }
|
---|
137 |
|
---|
138 | /// <summary>
|
---|
139 | /// Check if a fcomplex number equals this fcomplex number
|
---|
140 | /// </summary>
|
---|
141 | /// <param name="other">other complex number</param>
|
---|
142 | /// <returns>true if both, real and imaginary parts of both complex number are (binary) equal, false otherwise</returns>
|
---|
143 | public bool Equals(fcomplex other) {
|
---|
144 | return real.Equals(other.real) && imag.Equals(other.imag);
|
---|
145 | }
|
---|
146 |
|
---|
147 | /// <summary>
|
---|
148 | /// Give HashCode of this fcomplex number
|
---|
149 | /// </summary>
|
---|
150 | /// <returns>HashCode of this fcomplex number</returns>
|
---|
151 | public override int GetHashCode() {
|
---|
152 | return 31 * real.GetHashCode() + imag.GetHashCode();
|
---|
153 | }
|
---|
154 |
|
---|
155 | |
---|
156 |
|
---|
157 | |
---|
158 | #region HYCALPER AUTO GENERATED CODE
|
---|
159 | |
---|
160 |
|
---|
161 | /// <summary>
|
---|
162 | /// Add two complex numbers
|
---|
163 | /// </summary>
|
---|
164 | /// <param name="A">First summand</param>
|
---|
165 | /// <param name="B">Second summand</param>
|
---|
166 | /// <returns>result</returns>
|
---|
167 | public static complex operator +( fcomplex A, complex B) {
|
---|
168 | complex ret;
|
---|
169 | ret.real = (double) (A.real + B.real );
|
---|
170 | ret.imag = (double) (A.imag + B.imag );
|
---|
171 | return ret;
|
---|
172 | }
|
---|
173 | /// <summary>
|
---|
174 | /// Subtract two complex values
|
---|
175 | /// </summary>
|
---|
176 | /// <param name="A">Minuend</param>
|
---|
177 | /// <param name="B">Subtrahend</param>
|
---|
178 | /// <returns>result</returns>
|
---|
179 | public static complex operator -( fcomplex A, complex B) {
|
---|
180 | complex ret;
|
---|
181 | ret.real = (double) (A.real - B.real );
|
---|
182 | ret.imag = (double) (A.imag - B.imag );
|
---|
183 | return ret;
|
---|
184 | }
|
---|
185 | /// <summary>
|
---|
186 | /// Multiply two complex values
|
---|
187 | /// </summary>
|
---|
188 | /// <param name="A">First factor</param>
|
---|
189 | /// <param name="B">Second factor</param>
|
---|
190 | /// <returns>result</returns>
|
---|
191 | public static complex operator *( fcomplex A, complex B) {
|
---|
192 | complex ret;
|
---|
193 | ret.real = (double) ((A.real * B.real ) - (A.imag * B.imag ));
|
---|
194 | ret.imag = (double) ((A.real * B.imag ) + (A.imag * B.real ));
|
---|
195 | return ret;
|
---|
196 | }
|
---|
197 | /// <summary>
|
---|
198 | /// Divide two numbers
|
---|
199 | /// </summary>
|
---|
200 | /// <param name="A">Divident</param>
|
---|
201 | /// <param name="B">Divisor</param>
|
---|
202 | /// <returns>Result</returns>
|
---|
203 | /// <remarks><para>Unless the operator must handle special inputs (Inf or 0 values),
|
---|
204 | /// the algorithm described in [1] is used for division. This is considered to be
|
---|
205 | /// more robust against floating point overflow than the naive approach of simple
|
---|
206 | /// cartesian division.</para>
|
---|
207 | /// <para>References: [1]: Smith, R.L., Algorithm 116: Complex division. Commun.ACM 5,8 (1962),435 <br />
|
---|
208 | /// [2]: Stewart, G.W., A note on complex division, ACM trans.on math software, Vol.11, N.3 (1985)</para></remarks>
|
---|
209 | public static complex operator /( fcomplex A, complex B) {
|
---|
210 | if (B.imag == 0) return A / B.real;
|
---|
211 | return A * (1 / B);
|
---|
212 | if (IsNaN(A) || complex .IsNaN(B)) return NaN;
|
---|
213 | //if ( complex .IsInfinity(B)) return NaN;
|
---|
214 | //if (A.real == 0 && A.imag == 0) return ( complex )0;
|
---|
215 | complex ret;
|
---|
216 | if (B.real == 0) {
|
---|
217 | ret.imag = (double) -(A.real / B.imag);
|
---|
218 | ret.real = (double) (A.imag / B.imag);
|
---|
219 | return ret;
|
---|
220 | }
|
---|
221 | // this would be the naive approach. But it come with to little robustness against overflow
|
---|
222 | //double norm2 = B.real * B.real + B.imag * B.imag;
|
---|
223 | //if (norm2 == 0) return INF; // this may be removed, since division by 0 results in inf anyway ?
|
---|
224 | //ret.real = (double) (((A.real * B.real ) + (A.imag * B.imag )) / norm2);
|
---|
225 | //ret.imag = (double) (((A.imag * B.real ) - (A.real * B.imag )) / norm2);
|
---|
226 |
|
---|
227 | // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
|
---|
228 | // did not show any advantage when using double precision floating point arithmetic.
|
---|
229 | double tmp1, tmp2;
|
---|
230 | if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
|
---|
231 | tmp1 = (double) (B.imag * (1/B.real));
|
---|
232 | tmp2 = (double) (B.real + B.imag*tmp1);
|
---|
233 | ret.real = (double) (A.real + A.imag*tmp1)/tmp2;
|
---|
234 | ret.imag = (double) (A.imag - A.real*tmp1)/tmp2;
|
---|
235 | } else {
|
---|
236 | tmp1 = (double) (B.real * (1/B.imag));
|
---|
237 | tmp2 = (double) (B.imag + B.real*tmp1);
|
---|
238 | ret.real = (double) (A.imag + A.real*tmp1)/tmp2;
|
---|
239 | ret.imag = - (double) (A.real - A.imag*tmp1)/tmp2;
|
---|
240 | }
|
---|
241 | return ret;
|
---|
242 | }
|
---|
243 | /// <summary>
|
---|
244 | /// Equality comparison for complex numbers
|
---|
245 | /// </summary>
|
---|
246 | /// <param name="A">Left side</param>
|
---|
247 | /// <param name="B">Right side</param>
|
---|
248 | /// <returns>true, if real and imaginary part are identical</returns>
|
---|
249 | public static bool operator ==( fcomplex A, complex B) {
|
---|
250 | return (A.imag == B.imag ) && (A.real == B.real );
|
---|
251 | }
|
---|
252 | /// <summary>
|
---|
253 | /// Unequality comparison for complex numbers
|
---|
254 | /// </summary>
|
---|
255 | /// <param name="A">Left side</param>
|
---|
256 | /// <param name="B">Right side</param>
|
---|
257 | /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
|
---|
258 | public static bool operator !=( fcomplex A, complex B) {
|
---|
259 | return (A.imag != B.imag ) || (A.real != B.real );
|
---|
260 | }
|
---|
261 | /// <summary>
|
---|
262 | /// Greater than comparison for complex numbers
|
---|
263 | /// </summary>
|
---|
264 | /// <param name="A">Left side</param>
|
---|
265 | /// <param name="B">Right side</param>
|
---|
266 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
267 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
268 | public static bool operator > ( fcomplex A, complex B) {
|
---|
269 | return (A.real > B.real );
|
---|
270 | }
|
---|
271 | /// <summary>
|
---|
272 | /// Lower than comparison for complex numbers
|
---|
273 | /// </summary>
|
---|
274 | /// <param name="A">Left side</param>
|
---|
275 | /// <param name="B">Right side</param>
|
---|
276 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
277 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
278 | public static bool operator < ( fcomplex A, complex B) {
|
---|
279 | return (A.real < B.real );
|
---|
280 | }
|
---|
281 | /// <summary>
|
---|
282 | /// Greater than or equal to comparison for complex numbers
|
---|
283 | /// </summary>
|
---|
284 | /// <param name="A">Left side</param>
|
---|
285 | /// <param name="B">Right side</param>
|
---|
286 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
287 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
288 | public static bool operator >=( fcomplex A, complex B) {
|
---|
289 | return (A.real >= B.real );
|
---|
290 | }
|
---|
291 | /// <summary>
|
---|
292 | /// Lower than or equal to comparison for complex numbers
|
---|
293 | /// </summary>
|
---|
294 | /// <param name="A">Left side</param>
|
---|
295 | /// <param name="B">Right side</param>
|
---|
296 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
297 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
298 | public static bool operator <=( fcomplex A, complex B) {
|
---|
299 | return (A.real <= B.real );
|
---|
300 | }
|
---|
301 |
|
---|
302 | /// <summary>
|
---|
303 | /// Add two complex numbers
|
---|
304 | /// </summary>
|
---|
305 | /// <param name="A">First summand</param>
|
---|
306 | /// <param name="B">Second summand</param>
|
---|
307 | /// <returns>result</returns>
|
---|
308 | public static fcomplex operator +( fcomplex A, fcomplex B) {
|
---|
309 | fcomplex ret;
|
---|
310 | ret.real = (float) (A.real + B.real );
|
---|
311 | ret.imag = (float) (A.imag + B.imag );
|
---|
312 | return ret;
|
---|
313 | }
|
---|
314 | /// <summary>
|
---|
315 | /// Subtract two complex values
|
---|
316 | /// </summary>
|
---|
317 | /// <param name="A">Minuend</param>
|
---|
318 | /// <param name="B">Subtrahend</param>
|
---|
319 | /// <returns>result</returns>
|
---|
320 | public static fcomplex operator -( fcomplex A, fcomplex B) {
|
---|
321 | fcomplex ret;
|
---|
322 | ret.real = (float) (A.real - B.real );
|
---|
323 | ret.imag = (float) (A.imag - B.imag );
|
---|
324 | return ret;
|
---|
325 | }
|
---|
326 | /// <summary>
|
---|
327 | /// Multiply two complex values
|
---|
328 | /// </summary>
|
---|
329 | /// <param name="A">First factor</param>
|
---|
330 | /// <param name="B">Second factor</param>
|
---|
331 | /// <returns>result</returns>
|
---|
332 | public static fcomplex operator *( fcomplex A, fcomplex B) {
|
---|
333 | fcomplex ret;
|
---|
334 | ret.real = (float) ((A.real * B.real ) - (A.imag * B.imag ));
|
---|
335 | ret.imag = (float) ((A.real * B.imag ) + (A.imag * B.real ));
|
---|
336 | return ret;
|
---|
337 | }
|
---|
338 | /// <summary>
|
---|
339 | /// Divide two numbers
|
---|
340 | /// </summary>
|
---|
341 | /// <param name="A">Divident</param>
|
---|
342 | /// <param name="B">Divisor</param>
|
---|
343 | /// <returns>Result</returns>
|
---|
344 | /// <remarks><para>Unless the operator must handle special inputs (Inf or 0 values),
|
---|
345 | /// the algorithm described in [1] is used for division. This is considered to be
|
---|
346 | /// more robust against floating point overflow than the naive approach of simple
|
---|
347 | /// cartesian division.</para>
|
---|
348 | /// <para>References: [1]: Smith, R.L., Algorithm 116: Complex division. Commun.ACM 5,8 (1962),435 <br />
|
---|
349 | /// [2]: Stewart, G.W., A note on complex division, ACM trans.on math software, Vol.11, N.3 (1985)</para></remarks>
|
---|
350 | public static fcomplex operator /( fcomplex A, fcomplex B) {
|
---|
351 | if (B.imag == 0) return A / B.real;
|
---|
352 | return A * (1 / B);
|
---|
353 | if (IsNaN(A) || fcomplex .IsNaN(B)) return NaN;
|
---|
354 | //if ( fcomplex .IsInfinity(B)) return NaN;
|
---|
355 | //if (A.real == 0 && A.imag == 0) return ( fcomplex )0;
|
---|
356 | fcomplex ret;
|
---|
357 | if (B.real == 0) {
|
---|
358 | ret.imag = (float) -(A.real / B.imag);
|
---|
359 | ret.real = (float) (A.imag / B.imag);
|
---|
360 | return ret;
|
---|
361 | }
|
---|
362 | // this would be the naive approach. But it come with to little robustness against overflow
|
---|
363 | //double norm2 = B.real * B.real + B.imag * B.imag;
|
---|
364 | //if (norm2 == 0) return INF; // this may be removed, since division by 0 results in inf anyway ?
|
---|
365 | //ret.real = (float) (((A.real * B.real ) + (A.imag * B.imag )) / norm2);
|
---|
366 | //ret.imag = (float) (((A.imag * B.real ) - (A.real * B.imag )) / norm2);
|
---|
367 |
|
---|
368 | // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
|
---|
369 | // did not show any advantage when using double precision floating point arithmetic.
|
---|
370 | float tmp1, tmp2;
|
---|
371 | if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
|
---|
372 | tmp1 = (float) (B.imag * (1/B.real));
|
---|
373 | tmp2 = (float) (B.real + B.imag*tmp1);
|
---|
374 | ret.real = (float) (A.real + A.imag*tmp1)/tmp2;
|
---|
375 | ret.imag = (float) (A.imag - A.real*tmp1)/tmp2;
|
---|
376 | } else {
|
---|
377 | tmp1 = (float) (B.real * (1/B.imag));
|
---|
378 | tmp2 = (float) (B.imag + B.real*tmp1);
|
---|
379 | ret.real = (float) (A.imag + A.real*tmp1)/tmp2;
|
---|
380 | ret.imag = - (float) (A.real - A.imag*tmp1)/tmp2;
|
---|
381 | }
|
---|
382 | return ret;
|
---|
383 | }
|
---|
384 | /// <summary>
|
---|
385 | /// Equality comparison for complex numbers
|
---|
386 | /// </summary>
|
---|
387 | /// <param name="A">Left side</param>
|
---|
388 | /// <param name="B">Right side</param>
|
---|
389 | /// <returns>true, if real and imaginary part are identical</returns>
|
---|
390 | public static bool operator ==( fcomplex A, fcomplex B) {
|
---|
391 | return (A.imag == B.imag ) && (A.real == B.real );
|
---|
392 | }
|
---|
393 | /// <summary>
|
---|
394 | /// Unequality comparison for complex numbers
|
---|
395 | /// </summary>
|
---|
396 | /// <param name="A">Left side</param>
|
---|
397 | /// <param name="B">Right side</param>
|
---|
398 | /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
|
---|
399 | public static bool operator !=( fcomplex A, fcomplex B) {
|
---|
400 | return (A.imag != B.imag ) || (A.real != B.real );
|
---|
401 | }
|
---|
402 | /// <summary>
|
---|
403 | /// Greater than comparison for complex numbers
|
---|
404 | /// </summary>
|
---|
405 | /// <param name="A">Left side</param>
|
---|
406 | /// <param name="B">Right side</param>
|
---|
407 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
408 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
409 | public static bool operator > ( fcomplex A, fcomplex B) {
|
---|
410 | return (A.real > B.real );
|
---|
411 | }
|
---|
412 | /// <summary>
|
---|
413 | /// Lower than comparison for complex numbers
|
---|
414 | /// </summary>
|
---|
415 | /// <param name="A">Left side</param>
|
---|
416 | /// <param name="B">Right side</param>
|
---|
417 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
418 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
419 | public static bool operator < ( fcomplex A, fcomplex B) {
|
---|
420 | return (A.real < B.real );
|
---|
421 | }
|
---|
422 | /// <summary>
|
---|
423 | /// Greater than or equal to comparison for complex numbers
|
---|
424 | /// </summary>
|
---|
425 | /// <param name="A">Left side</param>
|
---|
426 | /// <param name="B">Right side</param>
|
---|
427 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
428 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
429 | public static bool operator >=( fcomplex A, fcomplex B) {
|
---|
430 | return (A.real >= B.real );
|
---|
431 | }
|
---|
432 | /// <summary>
|
---|
433 | /// Lower than or equal to comparison for complex numbers
|
---|
434 | /// </summary>
|
---|
435 | /// <param name="A">Left side</param>
|
---|
436 | /// <param name="B">Right side</param>
|
---|
437 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
438 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
439 | public static bool operator <=( fcomplex A, fcomplex B) {
|
---|
440 | return (A.real <= B.real );
|
---|
441 | }
|
---|
442 |
|
---|
443 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
444 |
|
---|
445 | |
---|
446 |
|
---|
447 | |
---|
448 | #region HYCALPER AUTO GENERATED CODE
|
---|
449 | |
---|
450 |
|
---|
451 | /// <summary>
|
---|
452 | /// Add two complex numbers
|
---|
453 | /// </summary>
|
---|
454 | /// <param name="A">First summand</param>
|
---|
455 | /// <param name="B">Second summand</param>
|
---|
456 | /// <returns>Result</returns>
|
---|
457 | public static fcomplex operator +( fcomplex A, Int64 B) {
|
---|
458 | fcomplex ret;
|
---|
459 | ret.real = (float) (A.real + B);
|
---|
460 | ret.imag = (float) A.imag;
|
---|
461 | return ret;
|
---|
462 | }
|
---|
463 | /// <summary>
|
---|
464 | /// Subtract two values
|
---|
465 | /// </summary>
|
---|
466 | /// <param name="A">Minuend</param>
|
---|
467 | /// <param name="B">Subtrahend</param>
|
---|
468 | /// <returns>result</returns>
|
---|
469 | public static fcomplex operator -( fcomplex A, Int64 B) {
|
---|
470 | fcomplex ret;
|
---|
471 | ret.real = (float) (A.real - B);
|
---|
472 | ret.imag = (float) A.imag;
|
---|
473 | return ret;
|
---|
474 | }
|
---|
475 | /// <summary>
|
---|
476 | /// Multiply two values
|
---|
477 | /// </summary>
|
---|
478 | /// <param name="A">First factor</param>
|
---|
479 | /// <param name="B">Second factor</param>
|
---|
480 | /// <returns>result</returns>
|
---|
481 | public static fcomplex operator *( fcomplex A, Int64 B) {
|
---|
482 | fcomplex ret;
|
---|
483 | ret.real = (float) (A.real * B);
|
---|
484 | ret.imag = (float) (A.imag * B);
|
---|
485 | return ret;
|
---|
486 | }
|
---|
487 | /// <summary>
|
---|
488 | /// Divide two numbers
|
---|
489 | /// </summary>
|
---|
490 | /// <param name="A">Divident</param>
|
---|
491 | /// <param name="B">Divisor</param>
|
---|
492 | /// <returns>result</returns>
|
---|
493 | public static fcomplex operator /( fcomplex A, Int64 B) {
|
---|
494 | if (IsNaN(A)) return NaN;
|
---|
495 |
|
---|
496 | if (A.real == 0 && A.imag == 0) {
|
---|
497 | if (B == 0) return NaN;
|
---|
498 | return ( fcomplex )0;
|
---|
499 | } else {
|
---|
500 | if (false)
|
---|
501 | {
|
---|
502 | if (IsInfinity(A)) {
|
---|
503 | return NaN;
|
---|
504 | } else {
|
---|
505 | return ( fcomplex )0;
|
---|
506 | }
|
---|
507 | }
|
---|
508 | }
|
---|
509 | fcomplex ret;
|
---|
510 | if (B == 0) return INF ;
|
---|
511 | ret.real = (float) (A.real / B);
|
---|
512 | ret.imag = (float) (A.imag / B);
|
---|
513 | return ret;
|
---|
514 | }
|
---|
515 | /// <summary>
|
---|
516 | /// Equality comparison for complex numbers
|
---|
517 | /// </summary>
|
---|
518 | /// <param name="A">Left side</param>
|
---|
519 | /// <param name="B">Right side</param>
|
---|
520 | /// <returns>result</returns>
|
---|
521 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
522 | public static bool operator ==( fcomplex A, Int64 B) {
|
---|
523 | return (A.real == B && A.imag == 0.0);
|
---|
524 | }
|
---|
525 | /// <summary>
|
---|
526 | /// Unequality comparison for complex numbers
|
---|
527 | /// </summary>
|
---|
528 | /// <param name="A">Left side</param>
|
---|
529 | /// <param name="B">Right side</param>
|
---|
530 | /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
|
---|
531 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
532 | public static bool operator !=( fcomplex A, Int64 B) {
|
---|
533 | return (A.imag != 0.0) || (A.real != B);
|
---|
534 | }
|
---|
535 | /// <summary>
|
---|
536 | /// Freater than comparison for complex numbers
|
---|
537 | /// </summary>
|
---|
538 | /// <param name="A">Left side</param>
|
---|
539 | /// <param name="B">Right side</param>
|
---|
540 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
541 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
542 | public static bool operator > ( fcomplex A, Int64 B) {
|
---|
543 | return (A.real > B);
|
---|
544 | }
|
---|
545 | /// <summary>
|
---|
546 | /// Lower than comparison for complex numbers
|
---|
547 | /// </summary>
|
---|
548 | /// <param name="A">Left side</param>
|
---|
549 | /// <param name="B">Right side</param>
|
---|
550 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
551 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
552 | public static bool operator <( fcomplex A, Int64 B) {
|
---|
553 | return (A.real < B);
|
---|
554 | }
|
---|
555 | /// <summary>
|
---|
556 | /// Greater than or equal to comparison for complex numbers
|
---|
557 | /// </summary>
|
---|
558 | /// <param name="A">Left side</param>
|
---|
559 | /// <param name="B">Right side</param>
|
---|
560 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
561 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
562 | public static bool operator >=( fcomplex A, Int64 B) {
|
---|
563 | return (A.real >= B);
|
---|
564 | }
|
---|
565 | /// <summary>
|
---|
566 | /// Lower than or equal to comparison for complex numbers
|
---|
567 | /// </summary>
|
---|
568 | /// <param name="A">Left side</param>
|
---|
569 | /// <param name="B">Right side</param>
|
---|
570 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
571 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
572 | public static bool operator <=( fcomplex A, Int64 B) {
|
---|
573 | return (A.real <= B);
|
---|
574 | }
|
---|
575 |
|
---|
576 | /// <summary>
|
---|
577 | /// Add two complex numbers
|
---|
578 | /// </summary>
|
---|
579 | /// <param name="A">First summand</param>
|
---|
580 | /// <param name="B">Second summand</param>
|
---|
581 | /// <returns>Result</returns>
|
---|
582 | public static fcomplex operator +( fcomplex A, Int32 B) {
|
---|
583 | fcomplex ret;
|
---|
584 | ret.real = (float) (A.real + B);
|
---|
585 | ret.imag = (float) A.imag;
|
---|
586 | return ret;
|
---|
587 | }
|
---|
588 | /// <summary>
|
---|
589 | /// Subtract two values
|
---|
590 | /// </summary>
|
---|
591 | /// <param name="A">Minuend</param>
|
---|
592 | /// <param name="B">Subtrahend</param>
|
---|
593 | /// <returns>result</returns>
|
---|
594 | public static fcomplex operator -( fcomplex A, Int32 B) {
|
---|
595 | fcomplex ret;
|
---|
596 | ret.real = (float) (A.real - B);
|
---|
597 | ret.imag = (float) A.imag;
|
---|
598 | return ret;
|
---|
599 | }
|
---|
600 | /// <summary>
|
---|
601 | /// Multiply two values
|
---|
602 | /// </summary>
|
---|
603 | /// <param name="A">First factor</param>
|
---|
604 | /// <param name="B">Second factor</param>
|
---|
605 | /// <returns>result</returns>
|
---|
606 | public static fcomplex operator *( fcomplex A, Int32 B) {
|
---|
607 | fcomplex ret;
|
---|
608 | ret.real = (float) (A.real * B);
|
---|
609 | ret.imag = (float) (A.imag * B);
|
---|
610 | return ret;
|
---|
611 | }
|
---|
612 | /// <summary>
|
---|
613 | /// Divide two numbers
|
---|
614 | /// </summary>
|
---|
615 | /// <param name="A">Divident</param>
|
---|
616 | /// <param name="B">Divisor</param>
|
---|
617 | /// <returns>result</returns>
|
---|
618 | public static fcomplex operator /( fcomplex A, Int32 B) {
|
---|
619 | if (IsNaN(A)) return NaN;
|
---|
620 |
|
---|
621 | if (A.real == 0 && A.imag == 0) {
|
---|
622 | if (B == 0) return NaN;
|
---|
623 | return ( fcomplex )0;
|
---|
624 | } else {
|
---|
625 | if (false)
|
---|
626 | {
|
---|
627 | if (IsInfinity(A)) {
|
---|
628 | return NaN;
|
---|
629 | } else {
|
---|
630 | return ( fcomplex )0;
|
---|
631 | }
|
---|
632 | }
|
---|
633 | }
|
---|
634 | fcomplex ret;
|
---|
635 | if (B == 0) return INF ;
|
---|
636 | ret.real = (float) (A.real / B);
|
---|
637 | ret.imag = (float) (A.imag / B);
|
---|
638 | return ret;
|
---|
639 | }
|
---|
640 | /// <summary>
|
---|
641 | /// Equality comparison for complex numbers
|
---|
642 | /// </summary>
|
---|
643 | /// <param name="A">Left side</param>
|
---|
644 | /// <param name="B">Right side</param>
|
---|
645 | /// <returns>result</returns>
|
---|
646 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
647 | public static bool operator ==( fcomplex A, Int32 B) {
|
---|
648 | return (A.real == B && A.imag == 0.0);
|
---|
649 | }
|
---|
650 | /// <summary>
|
---|
651 | /// Unequality comparison for complex numbers
|
---|
652 | /// </summary>
|
---|
653 | /// <param name="A">Left side</param>
|
---|
654 | /// <param name="B">Right side</param>
|
---|
655 | /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
|
---|
656 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
657 | public static bool operator !=( fcomplex A, Int32 B) {
|
---|
658 | return (A.imag != 0.0) || (A.real != B);
|
---|
659 | }
|
---|
660 | /// <summary>
|
---|
661 | /// Freater than comparison for complex numbers
|
---|
662 | /// </summary>
|
---|
663 | /// <param name="A">Left side</param>
|
---|
664 | /// <param name="B">Right side</param>
|
---|
665 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
666 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
667 | public static bool operator > ( fcomplex A, Int32 B) {
|
---|
668 | return (A.real > B);
|
---|
669 | }
|
---|
670 | /// <summary>
|
---|
671 | /// Lower than comparison for complex numbers
|
---|
672 | /// </summary>
|
---|
673 | /// <param name="A">Left side</param>
|
---|
674 | /// <param name="B">Right side</param>
|
---|
675 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
676 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
677 | public static bool operator <( fcomplex A, Int32 B) {
|
---|
678 | return (A.real < B);
|
---|
679 | }
|
---|
680 | /// <summary>
|
---|
681 | /// Greater than or equal to comparison for complex numbers
|
---|
682 | /// </summary>
|
---|
683 | /// <param name="A">Left side</param>
|
---|
684 | /// <param name="B">Right side</param>
|
---|
685 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
686 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
687 | public static bool operator >=( fcomplex A, Int32 B) {
|
---|
688 | return (A.real >= B);
|
---|
689 | }
|
---|
690 | /// <summary>
|
---|
691 | /// Lower than or equal to comparison for complex numbers
|
---|
692 | /// </summary>
|
---|
693 | /// <param name="A">Left side</param>
|
---|
694 | /// <param name="B">Right side</param>
|
---|
695 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
696 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
697 | public static bool operator <=( fcomplex A, Int32 B) {
|
---|
698 | return (A.real <= B);
|
---|
699 | }
|
---|
700 |
|
---|
701 | /// <summary>
|
---|
702 | /// Add two complex numbers
|
---|
703 | /// </summary>
|
---|
704 | /// <param name="A">First summand</param>
|
---|
705 | /// <param name="B">Second summand</param>
|
---|
706 | /// <returns>Result</returns>
|
---|
707 | public static fcomplex operator +( fcomplex A, float B) {
|
---|
708 | fcomplex ret;
|
---|
709 | ret.real = (float) (A.real + B);
|
---|
710 | ret.imag = (float) A.imag;
|
---|
711 | return ret;
|
---|
712 | }
|
---|
713 | /// <summary>
|
---|
714 | /// Subtract two values
|
---|
715 | /// </summary>
|
---|
716 | /// <param name="A">Minuend</param>
|
---|
717 | /// <param name="B">Subtrahend</param>
|
---|
718 | /// <returns>result</returns>
|
---|
719 | public static fcomplex operator -( fcomplex A, float B) {
|
---|
720 | fcomplex ret;
|
---|
721 | ret.real = (float) (A.real - B);
|
---|
722 | ret.imag = (float) A.imag;
|
---|
723 | return ret;
|
---|
724 | }
|
---|
725 | /// <summary>
|
---|
726 | /// Multiply two values
|
---|
727 | /// </summary>
|
---|
728 | /// <param name="A">First factor</param>
|
---|
729 | /// <param name="B">Second factor</param>
|
---|
730 | /// <returns>result</returns>
|
---|
731 | public static fcomplex operator *( fcomplex A, float B) {
|
---|
732 | fcomplex ret;
|
---|
733 | ret.real = (float) (A.real * B);
|
---|
734 | ret.imag = (float) (A.imag * B);
|
---|
735 | return ret;
|
---|
736 | }
|
---|
737 | /// <summary>
|
---|
738 | /// Divide two numbers
|
---|
739 | /// </summary>
|
---|
740 | /// <param name="A">Divident</param>
|
---|
741 | /// <param name="B">Divisor</param>
|
---|
742 | /// <returns>result</returns>
|
---|
743 | public static fcomplex operator /( fcomplex A, float B) {
|
---|
744 | if (IsNaN(A)) return NaN;
|
---|
745 | if (float.IsNaN(B)) return NaN;
|
---|
746 | if (A.real == 0 && A.imag == 0) {
|
---|
747 | if (B == 0) return NaN;
|
---|
748 | return ( fcomplex )0;
|
---|
749 | } else {
|
---|
750 | if (float.IsInfinity(B))
|
---|
751 | {
|
---|
752 | if (IsInfinity(A)) {
|
---|
753 | return NaN;
|
---|
754 | } else {
|
---|
755 | return ( fcomplex )0;
|
---|
756 | }
|
---|
757 | }
|
---|
758 | }
|
---|
759 | fcomplex ret;
|
---|
760 | if (B == 0) return INF ;
|
---|
761 | ret.real = (float) (A.real / B);
|
---|
762 | ret.imag = (float) (A.imag / B);
|
---|
763 | return ret;
|
---|
764 | }
|
---|
765 | /// <summary>
|
---|
766 | /// Equality comparison for complex numbers
|
---|
767 | /// </summary>
|
---|
768 | /// <param name="A">Left side</param>
|
---|
769 | /// <param name="B">Right side</param>
|
---|
770 | /// <returns>result</returns>
|
---|
771 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
772 | public static bool operator ==( fcomplex A, float B) {
|
---|
773 | return (A.real == B && A.imag == 0.0);
|
---|
774 | }
|
---|
775 | /// <summary>
|
---|
776 | /// Unequality comparison for complex numbers
|
---|
777 | /// </summary>
|
---|
778 | /// <param name="A">Left side</param>
|
---|
779 | /// <param name="B">Right side</param>
|
---|
780 | /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
|
---|
781 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
782 | public static bool operator !=( fcomplex A, float B) {
|
---|
783 | return (A.imag != 0.0) || (A.real != B);
|
---|
784 | }
|
---|
785 | /// <summary>
|
---|
786 | /// Freater than comparison for complex numbers
|
---|
787 | /// </summary>
|
---|
788 | /// <param name="A">Left side</param>
|
---|
789 | /// <param name="B">Right side</param>
|
---|
790 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
791 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
792 | public static bool operator > ( fcomplex A, float B) {
|
---|
793 | return (A.real > B);
|
---|
794 | }
|
---|
795 | /// <summary>
|
---|
796 | /// Lower than comparison for complex numbers
|
---|
797 | /// </summary>
|
---|
798 | /// <param name="A">Left side</param>
|
---|
799 | /// <param name="B">Right side</param>
|
---|
800 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
801 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
802 | public static bool operator <( fcomplex A, float B) {
|
---|
803 | return (A.real < B);
|
---|
804 | }
|
---|
805 | /// <summary>
|
---|
806 | /// Greater than or equal to comparison for complex numbers
|
---|
807 | /// </summary>
|
---|
808 | /// <param name="A">Left side</param>
|
---|
809 | /// <param name="B">Right side</param>
|
---|
810 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
811 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
812 | public static bool operator >=( fcomplex A, float B) {
|
---|
813 | return (A.real >= B);
|
---|
814 | }
|
---|
815 | /// <summary>
|
---|
816 | /// Lower than or equal to comparison for complex numbers
|
---|
817 | /// </summary>
|
---|
818 | /// <param name="A">Left side</param>
|
---|
819 | /// <param name="B">Right side</param>
|
---|
820 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
821 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
822 | public static bool operator <=( fcomplex A, float B) {
|
---|
823 | return (A.real <= B);
|
---|
824 | }
|
---|
825 |
|
---|
826 | /// <summary>
|
---|
827 | /// Add two complex numbers
|
---|
828 | /// </summary>
|
---|
829 | /// <param name="A">First summand</param>
|
---|
830 | /// <param name="B">Second summand</param>
|
---|
831 | /// <returns>Result</returns>
|
---|
832 | public static fcomplex operator +( fcomplex A, byte B) {
|
---|
833 | fcomplex ret;
|
---|
834 | ret.real = (float) (A.real + B);
|
---|
835 | ret.imag = (float) A.imag;
|
---|
836 | return ret;
|
---|
837 | }
|
---|
838 | /// <summary>
|
---|
839 | /// Subtract two values
|
---|
840 | /// </summary>
|
---|
841 | /// <param name="A">Minuend</param>
|
---|
842 | /// <param name="B">Subtrahend</param>
|
---|
843 | /// <returns>result</returns>
|
---|
844 | public static fcomplex operator -( fcomplex A, byte B) {
|
---|
845 | fcomplex ret;
|
---|
846 | ret.real = (float) (A.real - B);
|
---|
847 | ret.imag = (float) A.imag;
|
---|
848 | return ret;
|
---|
849 | }
|
---|
850 | /// <summary>
|
---|
851 | /// Multiply two values
|
---|
852 | /// </summary>
|
---|
853 | /// <param name="A">First factor</param>
|
---|
854 | /// <param name="B">Second factor</param>
|
---|
855 | /// <returns>result</returns>
|
---|
856 | public static fcomplex operator *( fcomplex A, byte B) {
|
---|
857 | fcomplex ret;
|
---|
858 | ret.real = (float) (A.real * B);
|
---|
859 | ret.imag = (float) (A.imag * B);
|
---|
860 | return ret;
|
---|
861 | }
|
---|
862 | /// <summary>
|
---|
863 | /// Divide two numbers
|
---|
864 | /// </summary>
|
---|
865 | /// <param name="A">Divident</param>
|
---|
866 | /// <param name="B">Divisor</param>
|
---|
867 | /// <returns>result</returns>
|
---|
868 | public static fcomplex operator /( fcomplex A, byte B) {
|
---|
869 | if (IsNaN(A)) return NaN;
|
---|
870 |
|
---|
871 | if (A.real == 0 && A.imag == 0) {
|
---|
872 | if (B == 0) return NaN;
|
---|
873 | return ( fcomplex )0;
|
---|
874 | } else {
|
---|
875 | if (false)
|
---|
876 | {
|
---|
877 | if (IsInfinity(A)) {
|
---|
878 | return NaN;
|
---|
879 | } else {
|
---|
880 | return ( fcomplex )0;
|
---|
881 | }
|
---|
882 | }
|
---|
883 | }
|
---|
884 | fcomplex ret;
|
---|
885 | if (B == 0) return INF ;
|
---|
886 | ret.real = (float) (A.real / B);
|
---|
887 | ret.imag = (float) (A.imag / B);
|
---|
888 | return ret;
|
---|
889 | }
|
---|
890 | /// <summary>
|
---|
891 | /// Equality comparison for complex numbers
|
---|
892 | /// </summary>
|
---|
893 | /// <param name="A">Left side</param>
|
---|
894 | /// <param name="B">Right side</param>
|
---|
895 | /// <returns>result</returns>
|
---|
896 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
897 | public static bool operator ==( fcomplex A, byte B) {
|
---|
898 | return (A.real == B && A.imag == 0.0);
|
---|
899 | }
|
---|
900 | /// <summary>
|
---|
901 | /// Unequality comparison for complex numbers
|
---|
902 | /// </summary>
|
---|
903 | /// <param name="A">Left side</param>
|
---|
904 | /// <param name="B">Right side</param>
|
---|
905 | /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
|
---|
906 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
907 | public static bool operator !=( fcomplex A, byte B) {
|
---|
908 | return (A.imag != 0.0) || (A.real != B);
|
---|
909 | }
|
---|
910 | /// <summary>
|
---|
911 | /// Freater than comparison for complex numbers
|
---|
912 | /// </summary>
|
---|
913 | /// <param name="A">Left side</param>
|
---|
914 | /// <param name="B">Right side</param>
|
---|
915 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
916 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
917 | public static bool operator > ( fcomplex A, byte B) {
|
---|
918 | return (A.real > B);
|
---|
919 | }
|
---|
920 | /// <summary>
|
---|
921 | /// Lower than comparison for complex numbers
|
---|
922 | /// </summary>
|
---|
923 | /// <param name="A">Left side</param>
|
---|
924 | /// <param name="B">Right side</param>
|
---|
925 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
926 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
927 | public static bool operator <( fcomplex A, byte B) {
|
---|
928 | return (A.real < B);
|
---|
929 | }
|
---|
930 | /// <summary>
|
---|
931 | /// Greater than or equal to comparison for complex numbers
|
---|
932 | /// </summary>
|
---|
933 | /// <param name="A">Left side</param>
|
---|
934 | /// <param name="B">Right side</param>
|
---|
935 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
936 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
937 | public static bool operator >=( fcomplex A, byte B) {
|
---|
938 | return (A.real >= B);
|
---|
939 | }
|
---|
940 | /// <summary>
|
---|
941 | /// Lower than or equal to comparison for complex numbers
|
---|
942 | /// </summary>
|
---|
943 | /// <param name="A">Left side</param>
|
---|
944 | /// <param name="B">Right side</param>
|
---|
945 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
946 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
947 | public static bool operator <=( fcomplex A, byte B) {
|
---|
948 | return (A.real <= B);
|
---|
949 | }
|
---|
950 |
|
---|
951 | /// <summary>
|
---|
952 | /// Add two complex numbers
|
---|
953 | /// </summary>
|
---|
954 | /// <param name="A">First summand</param>
|
---|
955 | /// <param name="B">Second summand</param>
|
---|
956 | /// <returns>Result</returns>
|
---|
957 | public static fcomplex operator +( fcomplex A, double B) {
|
---|
958 | fcomplex ret;
|
---|
959 | ret.real = (float) (A.real + B);
|
---|
960 | ret.imag = (float) A.imag;
|
---|
961 | return ret;
|
---|
962 | }
|
---|
963 | /// <summary>
|
---|
964 | /// Subtract two values
|
---|
965 | /// </summary>
|
---|
966 | /// <param name="A">Minuend</param>
|
---|
967 | /// <param name="B">Subtrahend</param>
|
---|
968 | /// <returns>result</returns>
|
---|
969 | public static fcomplex operator -( fcomplex A, double B) {
|
---|
970 | fcomplex ret;
|
---|
971 | ret.real = (float) (A.real - B);
|
---|
972 | ret.imag = (float) A.imag;
|
---|
973 | return ret;
|
---|
974 | }
|
---|
975 | /// <summary>
|
---|
976 | /// Multiply two values
|
---|
977 | /// </summary>
|
---|
978 | /// <param name="A">First factor</param>
|
---|
979 | /// <param name="B">Second factor</param>
|
---|
980 | /// <returns>result</returns>
|
---|
981 | public static fcomplex operator *( fcomplex A, double B) {
|
---|
982 | fcomplex ret;
|
---|
983 | ret.real = (float) (A.real * B);
|
---|
984 | ret.imag = (float) (A.imag * B);
|
---|
985 | return ret;
|
---|
986 | }
|
---|
987 | /// <summary>
|
---|
988 | /// Divide two numbers
|
---|
989 | /// </summary>
|
---|
990 | /// <param name="A">Divident</param>
|
---|
991 | /// <param name="B">Divisor</param>
|
---|
992 | /// <returns>result</returns>
|
---|
993 | public static fcomplex operator /( fcomplex A, double B) {
|
---|
994 | if (IsNaN(A)) return NaN;
|
---|
995 | if (double.IsNaN(B)) return NaN;
|
---|
996 | if (A.real == 0 && A.imag == 0) {
|
---|
997 | if (B == 0) return NaN;
|
---|
998 | return ( fcomplex )0;
|
---|
999 | } else {
|
---|
1000 | if (double.IsInfinity(B))
|
---|
1001 | {
|
---|
1002 | if (IsInfinity(A)) {
|
---|
1003 | return NaN;
|
---|
1004 | } else {
|
---|
1005 | return ( fcomplex )0;
|
---|
1006 | }
|
---|
1007 | }
|
---|
1008 | }
|
---|
1009 | fcomplex ret;
|
---|
1010 | if (B == 0) return INF ;
|
---|
1011 | ret.real = (float) (A.real / B);
|
---|
1012 | ret.imag = (float) (A.imag / B);
|
---|
1013 | return ret;
|
---|
1014 | }
|
---|
1015 | /// <summary>
|
---|
1016 | /// Equality comparison for complex numbers
|
---|
1017 | /// </summary>
|
---|
1018 | /// <param name="A">Left side</param>
|
---|
1019 | /// <param name="B">Right side</param>
|
---|
1020 | /// <returns>result</returns>
|
---|
1021 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
1022 | public static bool operator ==( fcomplex A, double B) {
|
---|
1023 | return (A.real == B && A.imag == 0.0);
|
---|
1024 | }
|
---|
1025 | /// <summary>
|
---|
1026 | /// Unequality comparison for complex numbers
|
---|
1027 | /// </summary>
|
---|
1028 | /// <param name="A">Left side</param>
|
---|
1029 | /// <param name="B">Right side</param>
|
---|
1030 | /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
|
---|
1031 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
1032 | public static bool operator !=( fcomplex A, double B) {
|
---|
1033 | return (A.imag != 0.0) || (A.real != B);
|
---|
1034 | }
|
---|
1035 | /// <summary>
|
---|
1036 | /// Freater than comparison for complex numbers
|
---|
1037 | /// </summary>
|
---|
1038 | /// <param name="A">Left side</param>
|
---|
1039 | /// <param name="B">Right side</param>
|
---|
1040 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
1041 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1042 | public static bool operator > ( fcomplex A, double B) {
|
---|
1043 | return (A.real > B);
|
---|
1044 | }
|
---|
1045 | /// <summary>
|
---|
1046 | /// Lower than comparison for complex numbers
|
---|
1047 | /// </summary>
|
---|
1048 | /// <param name="A">Left side</param>
|
---|
1049 | /// <param name="B">Right side</param>
|
---|
1050 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
1051 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1052 | public static bool operator <( fcomplex A, double B) {
|
---|
1053 | return (A.real < B);
|
---|
1054 | }
|
---|
1055 | /// <summary>
|
---|
1056 | /// Greater than or equal to comparison for complex numbers
|
---|
1057 | /// </summary>
|
---|
1058 | /// <param name="A">Left side</param>
|
---|
1059 | /// <param name="B">Right side</param>
|
---|
1060 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
1061 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1062 | public static bool operator >=( fcomplex A, double B) {
|
---|
1063 | return (A.real >= B);
|
---|
1064 | }
|
---|
1065 | /// <summary>
|
---|
1066 | /// Lower than or equal to comparison for complex numbers
|
---|
1067 | /// </summary>
|
---|
1068 | /// <param name="A">Left side</param>
|
---|
1069 | /// <param name="B">Right side</param>
|
---|
1070 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
1071 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1072 | public static bool operator <=( fcomplex A, double B) {
|
---|
1073 | return (A.real <= B);
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
1077 |
|
---|
1078 | |
---|
1079 |
|
---|
1080 | |
---|
1081 | #region HYCALPER AUTO GENERATED CODE
|
---|
1082 | |
---|
1083 |
|
---|
1084 | /// <summary>
|
---|
1085 | /// Add two complex values
|
---|
1086 | /// </summary>
|
---|
1087 | /// <param name="A">First summand</param>
|
---|
1088 | /// <param name="B">Second summand</param>
|
---|
1089 | /// <returns>Result</returns>
|
---|
1090 | public static fcomplex operator +( Int64 A, fcomplex B) {
|
---|
1091 | fcomplex ret;
|
---|
1092 | ret.real = (float) (A + B.real);
|
---|
1093 | ret.imag = (float) B.imag;
|
---|
1094 | return ret;
|
---|
1095 | }
|
---|
1096 | /// <summary>
|
---|
1097 | /// Subtract two values
|
---|
1098 | /// </summary>
|
---|
1099 | /// <param name="A">Minuend</param>
|
---|
1100 | /// <param name="B">Subtrahend</param>
|
---|
1101 | /// <returns>Result</returns>
|
---|
1102 | public static fcomplex operator -( Int64 A, fcomplex B) {
|
---|
1103 | fcomplex ret;
|
---|
1104 | ret.real = (float) (A - B.real);
|
---|
1105 | ret.imag = - (float) B.imag;
|
---|
1106 | return ret;
|
---|
1107 | }
|
---|
1108 | /// <summary>
|
---|
1109 | /// Multiply two values
|
---|
1110 | /// </summary>
|
---|
1111 | /// <param name="A">First factor</param>
|
---|
1112 | /// <param name="B">Second factor</param>
|
---|
1113 | /// <returns>Result</returns>
|
---|
1114 | public static fcomplex operator *( Int64 A, fcomplex B) {
|
---|
1115 | fcomplex ret;
|
---|
1116 | ret.real = (float) (A * B.real);
|
---|
1117 | ret.imag = (float) (A * B.imag);
|
---|
1118 | return ret;
|
---|
1119 | }
|
---|
1120 | /// <summary>
|
---|
1121 | /// Divide two values
|
---|
1122 | /// </summary>
|
---|
1123 | /// <param name="A">Divident</param>
|
---|
1124 | /// <param name="B">Divisor</param>
|
---|
1125 | /// <returns>Result</returns>
|
---|
1126 | public static fcomplex operator /( Int64 A, fcomplex B) {
|
---|
1127 | fcomplex ret;
|
---|
1128 | if (A == 0) {
|
---|
1129 | if (IsInfinity(B)) return NaN;
|
---|
1130 | } else {
|
---|
1131 | if (IsInfinity(B)) return ( fcomplex )0;
|
---|
1132 | }
|
---|
1133 | if (B.real == 0 && B.imag == 0) {
|
---|
1134 | return INF;
|
---|
1135 | }
|
---|
1136 | // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
|
---|
1137 | // did not show any advantage when using double precision floating point arithmetic.
|
---|
1138 | double tmp;
|
---|
1139 | if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
|
---|
1140 | tmp = (float) (B.imag * (1/B.real));
|
---|
1141 | ret.imag = (float) (B.real + B.imag*tmp);
|
---|
1142 | ret.real = (float) A/ret.imag;
|
---|
1143 | ret.imag = - (float) (A*tmp)/ret.imag;
|
---|
1144 | } else {
|
---|
1145 | tmp = (float) (B.real * (1/B.imag));
|
---|
1146 | ret.imag = (float) (B.imag + B.real*tmp);
|
---|
1147 | ret.real = (float) (A*tmp)/ret.imag;
|
---|
1148 | ret.imag = - (float) A/ret.imag;
|
---|
1149 | }
|
---|
1150 | return ret;
|
---|
1151 | }
|
---|
1152 | /// <summary>
|
---|
1153 | /// Equality comparison for complex numbers
|
---|
1154 | /// </summary>
|
---|
1155 | /// <param name="A">Left side</param>
|
---|
1156 | /// <param name="B">Right side</param>
|
---|
1157 | /// <returns>Result</returns>
|
---|
1158 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
1159 | public static bool operator ==( Int64 A, fcomplex B) {
|
---|
1160 | return (B.real == A && B.imag == 0.0);
|
---|
1161 | }
|
---|
1162 | /// <summary>
|
---|
1163 | /// Unequality comparison for complex numbers
|
---|
1164 | /// </summary>
|
---|
1165 | /// <param name="A">Left side</param>
|
---|
1166 | /// <param name="B">Right side</param>
|
---|
1167 | /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
|
---|
1168 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
1169 | public static bool operator !=( Int64 A, fcomplex B) {
|
---|
1170 | return (B.imag != 0.0) || (B.real != A);
|
---|
1171 | }
|
---|
1172 | /// <summary>
|
---|
1173 | /// Greater than comparison for complex numbers
|
---|
1174 | /// </summary>
|
---|
1175 | /// <param name="A">Left side</param>
|
---|
1176 | /// <param name="B">Right side</param>
|
---|
1177 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
1178 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1179 | public static bool operator > ( Int64 A, fcomplex B) {
|
---|
1180 | return (A > B.real);
|
---|
1181 | }
|
---|
1182 | /// <summary>
|
---|
1183 | /// Lower than comparison for complex numbers
|
---|
1184 | /// </summary>
|
---|
1185 | /// <param name="A">Left side</param>
|
---|
1186 | /// <param name="B">Right side</param>
|
---|
1187 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
1188 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1189 | public static bool operator < ( Int64 A, fcomplex B) {
|
---|
1190 | return (A < B.real);
|
---|
1191 | }
|
---|
1192 | /// <summary>
|
---|
1193 | /// Greater than or equal to comparison for complex numbers
|
---|
1194 | /// </summary>
|
---|
1195 | /// <param name="A">Left side</param>
|
---|
1196 | /// <param name="B">Right side</param>
|
---|
1197 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
1198 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1199 | public static bool operator >=( Int64 A, fcomplex B) {
|
---|
1200 | return (A >= B.real);
|
---|
1201 | }
|
---|
1202 | /// <summary>
|
---|
1203 | /// Lower than or equal to comparison for complex numbers
|
---|
1204 | /// </summary>
|
---|
1205 | /// <param name="A">Left side</param>
|
---|
1206 | /// <param name="B">Right side</param>
|
---|
1207 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
1208 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1209 | public static bool operator <=( Int64 A, fcomplex B) {
|
---|
1210 | return (A <= B.real);
|
---|
1211 | }
|
---|
1212 |
|
---|
1213 | /// <summary>
|
---|
1214 | /// Add two complex values
|
---|
1215 | /// </summary>
|
---|
1216 | /// <param name="A">First summand</param>
|
---|
1217 | /// <param name="B">Second summand</param>
|
---|
1218 | /// <returns>Result</returns>
|
---|
1219 | public static fcomplex operator +( Int32 A, fcomplex B) {
|
---|
1220 | fcomplex ret;
|
---|
1221 | ret.real = (float) (A + B.real);
|
---|
1222 | ret.imag = (float) B.imag;
|
---|
1223 | return ret;
|
---|
1224 | }
|
---|
1225 | /// <summary>
|
---|
1226 | /// Subtract two values
|
---|
1227 | /// </summary>
|
---|
1228 | /// <param name="A">Minuend</param>
|
---|
1229 | /// <param name="B">Subtrahend</param>
|
---|
1230 | /// <returns>Result</returns>
|
---|
1231 | public static fcomplex operator -( Int32 A, fcomplex B) {
|
---|
1232 | fcomplex ret;
|
---|
1233 | ret.real = (float) (A - B.real);
|
---|
1234 | ret.imag = - (float) B.imag;
|
---|
1235 | return ret;
|
---|
1236 | }
|
---|
1237 | /// <summary>
|
---|
1238 | /// Multiply two values
|
---|
1239 | /// </summary>
|
---|
1240 | /// <param name="A">First factor</param>
|
---|
1241 | /// <param name="B">Second factor</param>
|
---|
1242 | /// <returns>Result</returns>
|
---|
1243 | public static fcomplex operator *( Int32 A, fcomplex B) {
|
---|
1244 | fcomplex ret;
|
---|
1245 | ret.real = (float) (A * B.real);
|
---|
1246 | ret.imag = (float) (A * B.imag);
|
---|
1247 | return ret;
|
---|
1248 | }
|
---|
1249 | /// <summary>
|
---|
1250 | /// Divide two values
|
---|
1251 | /// </summary>
|
---|
1252 | /// <param name="A">Divident</param>
|
---|
1253 | /// <param name="B">Divisor</param>
|
---|
1254 | /// <returns>Result</returns>
|
---|
1255 | public static fcomplex operator /( Int32 A, fcomplex B) {
|
---|
1256 | fcomplex ret;
|
---|
1257 | if (A == 0) {
|
---|
1258 | if (IsInfinity(B)) return NaN;
|
---|
1259 | } else {
|
---|
1260 | if (IsInfinity(B)) return ( fcomplex )0;
|
---|
1261 | }
|
---|
1262 | if (B.real == 0 && B.imag == 0) {
|
---|
1263 | return INF;
|
---|
1264 | }
|
---|
1265 | // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
|
---|
1266 | // did not show any advantage when using double precision floating point arithmetic.
|
---|
1267 | double tmp;
|
---|
1268 | if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
|
---|
1269 | tmp = (float) (B.imag * (1/B.real));
|
---|
1270 | ret.imag = (float) (B.real + B.imag*tmp);
|
---|
1271 | ret.real = (float) A/ret.imag;
|
---|
1272 | ret.imag = - (float) (A*tmp)/ret.imag;
|
---|
1273 | } else {
|
---|
1274 | tmp = (float) (B.real * (1/B.imag));
|
---|
1275 | ret.imag = (float) (B.imag + B.real*tmp);
|
---|
1276 | ret.real = (float) (A*tmp)/ret.imag;
|
---|
1277 | ret.imag = - (float) A/ret.imag;
|
---|
1278 | }
|
---|
1279 | return ret;
|
---|
1280 | }
|
---|
1281 | /// <summary>
|
---|
1282 | /// Equality comparison for complex numbers
|
---|
1283 | /// </summary>
|
---|
1284 | /// <param name="A">Left side</param>
|
---|
1285 | /// <param name="B">Right side</param>
|
---|
1286 | /// <returns>Result</returns>
|
---|
1287 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
1288 | public static bool operator ==( Int32 A, fcomplex B) {
|
---|
1289 | return (B.real == A && B.imag == 0.0);
|
---|
1290 | }
|
---|
1291 | /// <summary>
|
---|
1292 | /// Unequality comparison for complex numbers
|
---|
1293 | /// </summary>
|
---|
1294 | /// <param name="A">Left side</param>
|
---|
1295 | /// <param name="B">Right side</param>
|
---|
1296 | /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
|
---|
1297 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
1298 | public static bool operator !=( Int32 A, fcomplex B) {
|
---|
1299 | return (B.imag != 0.0) || (B.real != A);
|
---|
1300 | }
|
---|
1301 | /// <summary>
|
---|
1302 | /// Greater than comparison for complex numbers
|
---|
1303 | /// </summary>
|
---|
1304 | /// <param name="A">Left side</param>
|
---|
1305 | /// <param name="B">Right side</param>
|
---|
1306 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
1307 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1308 | public static bool operator > ( Int32 A, fcomplex B) {
|
---|
1309 | return (A > B.real);
|
---|
1310 | }
|
---|
1311 | /// <summary>
|
---|
1312 | /// Lower than comparison for complex numbers
|
---|
1313 | /// </summary>
|
---|
1314 | /// <param name="A">Left side</param>
|
---|
1315 | /// <param name="B">Right side</param>
|
---|
1316 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
1317 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1318 | public static bool operator < ( Int32 A, fcomplex B) {
|
---|
1319 | return (A < B.real);
|
---|
1320 | }
|
---|
1321 | /// <summary>
|
---|
1322 | /// Greater than or equal to comparison for complex numbers
|
---|
1323 | /// </summary>
|
---|
1324 | /// <param name="A">Left side</param>
|
---|
1325 | /// <param name="B">Right side</param>
|
---|
1326 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
1327 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1328 | public static bool operator >=( Int32 A, fcomplex B) {
|
---|
1329 | return (A >= B.real);
|
---|
1330 | }
|
---|
1331 | /// <summary>
|
---|
1332 | /// Lower than or equal to comparison for complex numbers
|
---|
1333 | /// </summary>
|
---|
1334 | /// <param name="A">Left side</param>
|
---|
1335 | /// <param name="B">Right side</param>
|
---|
1336 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
1337 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1338 | public static bool operator <=( Int32 A, fcomplex B) {
|
---|
1339 | return (A <= B.real);
|
---|
1340 | }
|
---|
1341 |
|
---|
1342 | /// <summary>
|
---|
1343 | /// Add two complex values
|
---|
1344 | /// </summary>
|
---|
1345 | /// <param name="A">First summand</param>
|
---|
1346 | /// <param name="B">Second summand</param>
|
---|
1347 | /// <returns>Result</returns>
|
---|
1348 | public static fcomplex operator +( float A, fcomplex B) {
|
---|
1349 | fcomplex ret;
|
---|
1350 | ret.real = (float) (A + B.real);
|
---|
1351 | ret.imag = (float) B.imag;
|
---|
1352 | return ret;
|
---|
1353 | }
|
---|
1354 | /// <summary>
|
---|
1355 | /// Subtract two values
|
---|
1356 | /// </summary>
|
---|
1357 | /// <param name="A">Minuend</param>
|
---|
1358 | /// <param name="B">Subtrahend</param>
|
---|
1359 | /// <returns>Result</returns>
|
---|
1360 | public static fcomplex operator -( float A, fcomplex B) {
|
---|
1361 | fcomplex ret;
|
---|
1362 | ret.real = (float) (A - B.real);
|
---|
1363 | ret.imag = - (float) B.imag;
|
---|
1364 | return ret;
|
---|
1365 | }
|
---|
1366 | /// <summary>
|
---|
1367 | /// Multiply two values
|
---|
1368 | /// </summary>
|
---|
1369 | /// <param name="A">First factor</param>
|
---|
1370 | /// <param name="B">Second factor</param>
|
---|
1371 | /// <returns>Result</returns>
|
---|
1372 | public static fcomplex operator *( float A, fcomplex B) {
|
---|
1373 | fcomplex ret;
|
---|
1374 | ret.real = (float) (A * B.real);
|
---|
1375 | ret.imag = (float) (A * B.imag);
|
---|
1376 | return ret;
|
---|
1377 | }
|
---|
1378 | /// <summary>
|
---|
1379 | /// Divide two values
|
---|
1380 | /// </summary>
|
---|
1381 | /// <param name="A">Divident</param>
|
---|
1382 | /// <param name="B">Divisor</param>
|
---|
1383 | /// <returns>Result</returns>
|
---|
1384 | public static fcomplex operator /( float A, fcomplex B) {
|
---|
1385 | fcomplex ret;
|
---|
1386 | if (A == 0) {
|
---|
1387 | if (IsInfinity(B)) return NaN;
|
---|
1388 | } else {
|
---|
1389 | if (IsInfinity(B)) return ( fcomplex )0;
|
---|
1390 | }
|
---|
1391 | if (B.real == 0 && B.imag == 0) {
|
---|
1392 | return INF;
|
---|
1393 | }
|
---|
1394 | // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
|
---|
1395 | // did not show any advantage when using double precision floating point arithmetic.
|
---|
1396 | double tmp;
|
---|
1397 | if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
|
---|
1398 | tmp = (float) (B.imag * (1/B.real));
|
---|
1399 | ret.imag = (float) (B.real + B.imag*tmp);
|
---|
1400 | ret.real = (float) A/ret.imag;
|
---|
1401 | ret.imag = - (float) (A*tmp)/ret.imag;
|
---|
1402 | } else {
|
---|
1403 | tmp = (float) (B.real * (1/B.imag));
|
---|
1404 | ret.imag = (float) (B.imag + B.real*tmp);
|
---|
1405 | ret.real = (float) (A*tmp)/ret.imag;
|
---|
1406 | ret.imag = - (float) A/ret.imag;
|
---|
1407 | }
|
---|
1408 | return ret;
|
---|
1409 | }
|
---|
1410 | /// <summary>
|
---|
1411 | /// Equality comparison for complex numbers
|
---|
1412 | /// </summary>
|
---|
1413 | /// <param name="A">Left side</param>
|
---|
1414 | /// <param name="B">Right side</param>
|
---|
1415 | /// <returns>Result</returns>
|
---|
1416 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
1417 | public static bool operator ==( float A, fcomplex B) {
|
---|
1418 | return (B.real == A && B.imag == 0.0);
|
---|
1419 | }
|
---|
1420 | /// <summary>
|
---|
1421 | /// Unequality comparison for complex numbers
|
---|
1422 | /// </summary>
|
---|
1423 | /// <param name="A">Left side</param>
|
---|
1424 | /// <param name="B">Right side</param>
|
---|
1425 | /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
|
---|
1426 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
1427 | public static bool operator !=( float A, fcomplex B) {
|
---|
1428 | return (B.imag != 0.0) || (B.real != A);
|
---|
1429 | }
|
---|
1430 | /// <summary>
|
---|
1431 | /// Greater than comparison for complex numbers
|
---|
1432 | /// </summary>
|
---|
1433 | /// <param name="A">Left side</param>
|
---|
1434 | /// <param name="B">Right side</param>
|
---|
1435 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
1436 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1437 | public static bool operator > ( float A, fcomplex B) {
|
---|
1438 | return (A > B.real);
|
---|
1439 | }
|
---|
1440 | /// <summary>
|
---|
1441 | /// Lower than comparison for complex numbers
|
---|
1442 | /// </summary>
|
---|
1443 | /// <param name="A">Left side</param>
|
---|
1444 | /// <param name="B">Right side</param>
|
---|
1445 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
1446 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1447 | public static bool operator < ( float A, fcomplex B) {
|
---|
1448 | return (A < B.real);
|
---|
1449 | }
|
---|
1450 | /// <summary>
|
---|
1451 | /// Greater than or equal to comparison for complex numbers
|
---|
1452 | /// </summary>
|
---|
1453 | /// <param name="A">Left side</param>
|
---|
1454 | /// <param name="B">Right side</param>
|
---|
1455 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
1456 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1457 | public static bool operator >=( float A, fcomplex B) {
|
---|
1458 | return (A >= B.real);
|
---|
1459 | }
|
---|
1460 | /// <summary>
|
---|
1461 | /// Lower than or equal to comparison for complex numbers
|
---|
1462 | /// </summary>
|
---|
1463 | /// <param name="A">Left side</param>
|
---|
1464 | /// <param name="B">Right side</param>
|
---|
1465 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
1466 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1467 | public static bool operator <=( float A, fcomplex B) {
|
---|
1468 | return (A <= B.real);
|
---|
1469 | }
|
---|
1470 |
|
---|
1471 | /// <summary>
|
---|
1472 | /// Add two complex values
|
---|
1473 | /// </summary>
|
---|
1474 | /// <param name="A">First summand</param>
|
---|
1475 | /// <param name="B">Second summand</param>
|
---|
1476 | /// <returns>Result</returns>
|
---|
1477 | public static fcomplex operator +( byte A, fcomplex B) {
|
---|
1478 | fcomplex ret;
|
---|
1479 | ret.real = (float) (A + B.real);
|
---|
1480 | ret.imag = (float) B.imag;
|
---|
1481 | return ret;
|
---|
1482 | }
|
---|
1483 | /// <summary>
|
---|
1484 | /// Subtract two values
|
---|
1485 | /// </summary>
|
---|
1486 | /// <param name="A">Minuend</param>
|
---|
1487 | /// <param name="B">Subtrahend</param>
|
---|
1488 | /// <returns>Result</returns>
|
---|
1489 | public static fcomplex operator -( byte A, fcomplex B) {
|
---|
1490 | fcomplex ret;
|
---|
1491 | ret.real = (float) (A - B.real);
|
---|
1492 | ret.imag = - (float) B.imag;
|
---|
1493 | return ret;
|
---|
1494 | }
|
---|
1495 | /// <summary>
|
---|
1496 | /// Multiply two values
|
---|
1497 | /// </summary>
|
---|
1498 | /// <param name="A">First factor</param>
|
---|
1499 | /// <param name="B">Second factor</param>
|
---|
1500 | /// <returns>Result</returns>
|
---|
1501 | public static fcomplex operator *( byte A, fcomplex B) {
|
---|
1502 | fcomplex ret;
|
---|
1503 | ret.real = (float) (A * B.real);
|
---|
1504 | ret.imag = (float) (A * B.imag);
|
---|
1505 | return ret;
|
---|
1506 | }
|
---|
1507 | /// <summary>
|
---|
1508 | /// Divide two values
|
---|
1509 | /// </summary>
|
---|
1510 | /// <param name="A">Divident</param>
|
---|
1511 | /// <param name="B">Divisor</param>
|
---|
1512 | /// <returns>Result</returns>
|
---|
1513 | public static fcomplex operator /( byte A, fcomplex B) {
|
---|
1514 | fcomplex ret;
|
---|
1515 | if (A == 0) {
|
---|
1516 | if (IsInfinity(B)) return NaN;
|
---|
1517 | } else {
|
---|
1518 | if (IsInfinity(B)) return ( fcomplex )0;
|
---|
1519 | }
|
---|
1520 | if (B.real == 0 && B.imag == 0) {
|
---|
1521 | return INF;
|
---|
1522 | }
|
---|
1523 | // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
|
---|
1524 | // did not show any advantage when using double precision floating point arithmetic.
|
---|
1525 | double tmp;
|
---|
1526 | if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
|
---|
1527 | tmp = (float) (B.imag * (1/B.real));
|
---|
1528 | ret.imag = (float) (B.real + B.imag*tmp);
|
---|
1529 | ret.real = (float) A/ret.imag;
|
---|
1530 | ret.imag = - (float) (A*tmp)/ret.imag;
|
---|
1531 | } else {
|
---|
1532 | tmp = (float) (B.real * (1/B.imag));
|
---|
1533 | ret.imag = (float) (B.imag + B.real*tmp);
|
---|
1534 | ret.real = (float) (A*tmp)/ret.imag;
|
---|
1535 | ret.imag = - (float) A/ret.imag;
|
---|
1536 | }
|
---|
1537 | return ret;
|
---|
1538 | }
|
---|
1539 | /// <summary>
|
---|
1540 | /// Equality comparison for complex numbers
|
---|
1541 | /// </summary>
|
---|
1542 | /// <param name="A">Left side</param>
|
---|
1543 | /// <param name="B">Right side</param>
|
---|
1544 | /// <returns>Result</returns>
|
---|
1545 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
1546 | public static bool operator ==( byte A, fcomplex B) {
|
---|
1547 | return (B.real == A && B.imag == 0.0);
|
---|
1548 | }
|
---|
1549 | /// <summary>
|
---|
1550 | /// Unequality comparison for complex numbers
|
---|
1551 | /// </summary>
|
---|
1552 | /// <param name="A">Left side</param>
|
---|
1553 | /// <param name="B">Right side</param>
|
---|
1554 | /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
|
---|
1555 | /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
|
---|
1556 | public static bool operator !=( byte A, fcomplex B) {
|
---|
1557 | return (B.imag != 0.0) || (B.real != A);
|
---|
1558 | }
|
---|
1559 | /// <summary>
|
---|
1560 | /// Greater than comparison for complex numbers
|
---|
1561 | /// </summary>
|
---|
1562 | /// <param name="A">Left side</param>
|
---|
1563 | /// <param name="B">Right side</param>
|
---|
1564 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
1565 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1566 | public static bool operator > ( byte A, fcomplex B) {
|
---|
1567 | return (A > B.real);
|
---|
1568 | }
|
---|
1569 | /// <summary>
|
---|
1570 | /// Lower than comparison for complex numbers
|
---|
1571 | /// </summary>
|
---|
1572 | /// <param name="A">Left side</param>
|
---|
1573 | /// <param name="B">Right side</param>
|
---|
1574 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
1575 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1576 | public static bool operator < ( byte A, fcomplex B) {
|
---|
1577 | return (A < B.real);
|
---|
1578 | }
|
---|
1579 | /// <summary>
|
---|
1580 | /// Greater than or equal to comparison for complex numbers
|
---|
1581 | /// </summary>
|
---|
1582 | /// <param name="A">Left side</param>
|
---|
1583 | /// <param name="B">Right side</param>
|
---|
1584 | /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
|
---|
1585 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1586 | public static bool operator >=( byte A, fcomplex B) {
|
---|
1587 | return (A >= B.real);
|
---|
1588 | }
|
---|
1589 | /// <summary>
|
---|
1590 | /// Lower than or equal to comparison for complex numbers
|
---|
1591 | /// </summary>
|
---|
1592 | /// <param name="A">Left side</param>
|
---|
1593 | /// <param name="B">Right side</param>
|
---|
1594 | /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
|
---|
1595 | /// <remarks>Only the real parts are compared!</remarks>
|
---|
1596 | public static bool operator <=( byte A, fcomplex B) {
|
---|
1597 | return (A <= B.real);
|
---|
1598 | }
|
---|
1599 |
|
---|
1600 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
1601 |
|
---|
1602 | #region unary minus
|
---|
1603 | /// <summary>
|
---|
1604 | /// Unary minus operator
|
---|
1605 | /// </summary>
|
---|
1606 | /// <param name="in1">fcomplex input</param>
|
---|
1607 | /// <returns>fcomplex number similar to in1, having real and imag part negated</returns>
|
---|
1608 | public static fcomplex operator -( fcomplex in1) {
|
---|
1609 | fcomplex ret = new fcomplex();
|
---|
1610 | ret.imag = -in1.imag;
|
---|
1611 | ret.real = -in1.real;
|
---|
1612 | return ret;
|
---|
1613 | }
|
---|
1614 | #endregion
|
---|
1615 |
|
---|
1616 | /// <summary>
|
---|
1617 | /// Magnitude value of float complex number
|
---|
1618 | /// </summary>
|
---|
1619 | /// <param name="input">fcomplex number</param>
|
---|
1620 | /// <returns>Magnitude of input</returns>
|
---|
1621 | public static float Abs(fcomplex input) {
|
---|
1622 | return (float) Math.Sqrt ( input.real * input.real + input.imag * input.imag );
|
---|
1623 | }
|
---|
1624 | /// <summary>
|
---|
1625 | /// Angle of complex number
|
---|
1626 | /// </summary>
|
---|
1627 | /// <param name="input">fcomplex number to compute angle of</param>
|
---|
1628 | /// <returns>Angle of input</returns>
|
---|
1629 | public static double Angle(fcomplex input) {
|
---|
1630 | return (float) Math.Atan2 ( input.imag, input.real );
|
---|
1631 | }
|
---|
1632 | /// <summary>
|
---|
1633 | /// Arcus cosinus for float complex number
|
---|
1634 | /// </summary>
|
---|
1635 | /// <param name="input">fcomplex input</param>
|
---|
1636 | /// <returns>Arcus cosinus of input</returns>
|
---|
1637 | /// <remarks>The arcus cosinus of a complex number is computed by
|
---|
1638 | /// <para>Log(Sqrt(input^2 - 1) + input) * i </para></remarks>
|
---|
1639 | public static fcomplex Acos(fcomplex input) {
|
---|
1640 | fcomplex ret = new fcomplex ( 0, -1 );
|
---|
1641 | return fcomplex.Log ( fcomplex.Sqrt ( input * input - 1 )
|
---|
1642 | + input ) * ret;
|
---|
1643 | }
|
---|
1644 | /// <summary>
|
---|
1645 | /// Arcus cosinus of real number
|
---|
1646 | /// </summary>
|
---|
1647 | /// <param name="input">float input</param>
|
---|
1648 | /// <returns>Arcus cosinus of input</returns>
|
---|
1649 | /// <remarks>For input > 1.0, <see cref="ILNumerics.fcomplex.Acos(fcomplex)"/> will be used. </remarks>
|
---|
1650 | public static fcomplex Acos(float input) {
|
---|
1651 | if (Math.Abs(input) <= 1.0)
|
---|
1652 | return new fcomplex((float)Math.Acos(input), 0.0f);
|
---|
1653 | else {
|
---|
1654 | return Acos((fcomplex)input);
|
---|
1655 | }
|
---|
1656 | }
|
---|
1657 | /// <summary>
|
---|
1658 | /// Arcus sinus of real number
|
---|
1659 | /// </summary>
|
---|
1660 | /// <param name="input">float input</param>
|
---|
1661 | /// <returns>Arcus sinus of input</returns>
|
---|
1662 | /// <remarks>For input > 1.0, <see cref="ILNumerics.fcomplex.Asin(fcomplex)"/> will be used. </remarks>
|
---|
1663 | public static fcomplex Asin(float input) {
|
---|
1664 | if (Math.Abs(input) <= 1.0)
|
---|
1665 | return new fcomplex((float)Math.Asin(input), 0.0f);
|
---|
1666 | else {
|
---|
1667 | return Asin((fcomplex)input);
|
---|
1668 | }
|
---|
1669 | }
|
---|
1670 | /// <summary>
|
---|
1671 | /// Arcus sinus for complex number
|
---|
1672 | /// </summary>
|
---|
1673 | /// <param name="input">fcomplex input</param>
|
---|
1674 | /// <returns>Arcus sinus of input</returns>
|
---|
1675 | public static fcomplex Asin(fcomplex input) {
|
---|
1676 | fcomplex ret = Acos ( input );
|
---|
1677 | ret.real = (float) (Math.PI / 2 - ret.real);
|
---|
1678 | return ret;
|
---|
1679 | }
|
---|
1680 | /// <summary>
|
---|
1681 | /// Power of base e for float complex number
|
---|
1682 | /// </summary>
|
---|
1683 | /// <param name="input">fcomplex input</param>
|
---|
1684 | /// <returns>Result of Exp(input)</returns>
|
---|
1685 | public static fcomplex Exp(fcomplex input) {
|
---|
1686 | return fcomplex.FromPol ( (float) Math.Exp ( input.real ), input.imag );
|
---|
1687 | }
|
---|
1688 | /// <summary>
|
---|
1689 | /// fcomplex power real exponent
|
---|
1690 | /// </summary>
|
---|
1691 | /// <param name="input">Basis </param>
|
---|
1692 | /// <param name="exponent">Exponent</param>
|
---|
1693 | /// <returns>New fcomplex number with result</returns>
|
---|
1694 | public static fcomplex Pow(fcomplex input, double exponent) {
|
---|
1695 | fcomplex ret = input.Log ();
|
---|
1696 | ret.imag *= (float) exponent;
|
---|
1697 | ret.real *= (float) exponent;
|
---|
1698 | return ret.Exp ();
|
---|
1699 | }
|
---|
1700 | /// <summary>
|
---|
1701 | /// Complex power - real basis, real exponent
|
---|
1702 | /// </summary>
|
---|
1703 | /// <param name="basis">Basis</param>
|
---|
1704 | /// <param name="exponent">Exponent</param>
|
---|
1705 | /// <returns>fcomplex number.</returns>
|
---|
1706 | /// <remarks>The result will be a fcomplex number. For negative basis
|
---|
1707 | /// the basis will be converted to a fcomplex number and the power
|
---|
1708 | /// will be computed in the fcomplex plane.</remarks>
|
---|
1709 | public static fcomplex Pow(double basis, double exponent) {
|
---|
1710 | if (basis < 0) {
|
---|
1711 | return Pow((fcomplex)basis, exponent);
|
---|
1712 | } else {
|
---|
1713 | return (fcomplex)Math.Pow(basis, exponent);
|
---|
1714 | }
|
---|
1715 | }
|
---|
1716 | /// <summary>
|
---|
1717 | /// Power: complex base, complex exponent
|
---|
1718 | /// </summary>
|
---|
1719 | /// <param name="basis">Basis</param>
|
---|
1720 | /// <param name="exponent">Exponent</param>
|
---|
1721 | /// <returns>result of basis^exponent</returns>
|
---|
1722 | public static fcomplex Pow(fcomplex basis, fcomplex exponent) {
|
---|
1723 | fcomplex ret = ( basis.Log () * exponent );
|
---|
1724 | return ret.Exp ();
|
---|
1725 | }
|
---|
1726 | /// <summary>
|
---|
1727 | /// Square root of real input
|
---|
1728 | /// </summary>
|
---|
1729 | /// <param name="input">float input</param>
|
---|
1730 | /// <returns>Square root of input</returns>
|
---|
1731 | public static fcomplex Sqrt(float input) {
|
---|
1732 | if (input > 0)
|
---|
1733 | return new fcomplex((float)Math.Sqrt(input), 0.0f);
|
---|
1734 | else
|
---|
1735 | return Sqrt((fcomplex)input);
|
---|
1736 | }
|
---|
1737 | /// <summary>
|
---|
1738 | /// Square root of complex number
|
---|
1739 | /// </summary>
|
---|
1740 | /// <param name="input">fcomplex input</param>
|
---|
1741 | /// <returns>Square root of input</returns>
|
---|
1742 | public static fcomplex Sqrt(fcomplex input) {
|
---|
1743 | // Reference : numerical recipes in C: Appendix C
|
---|
1744 | fcomplex ret = new fcomplex ();
|
---|
1745 | double x, y, w, r;
|
---|
1746 | if (input.real == 0.0 && input.imag == 0.0)
|
---|
1747 | return ret;
|
---|
1748 | else {
|
---|
1749 | x = (float) Math.Abs ( input.real );
|
---|
1750 | y = (float) Math.Abs ( input.imag );
|
---|
1751 | if (x >= y) {
|
---|
1752 | r = y / x;
|
---|
1753 | w = Math.Sqrt ( x ) * Math.Sqrt ( 0.5 * ( 1.0 + Math.Sqrt ( 1.0 + r * r ) ) );
|
---|
1754 | } else {
|
---|
1755 | r = x / y;
|
---|
1756 | w = Math.Sqrt ( y ) * Math.Sqrt ( 0.5 * ( r + Math.Sqrt ( 1.0 + r * r ) ) );
|
---|
1757 | }
|
---|
1758 | if (input.real >= 0.0) {
|
---|
1759 | ret.real = (float) w;
|
---|
1760 | ret.imag = (float) (input.imag / ( 2.0 * w ));
|
---|
1761 | } else {
|
---|
1762 | ret.imag = (float) (( input.imag >= 0 ) ? w : -w);
|
---|
1763 | ret.real = (float) (input.imag / ( 2.0 * ret.imag ));
|
---|
1764 | }
|
---|
1765 | return ret;
|
---|
1766 | }
|
---|
1767 | }
|
---|
1768 | /// <summary>
|
---|
1769 | /// Tangens of float complex number
|
---|
1770 | /// </summary>
|
---|
1771 | /// <param name="input">fcomplex input</param>
|
---|
1772 | /// <returns>Tangens of input</returns>
|
---|
1773 | public static fcomplex Tan(fcomplex input) {
|
---|
1774 | fcomplex ci = Cos(input);
|
---|
1775 | if (ci.real == (float)0.0 && ci.imag == (float)0.0)
|
---|
1776 | return INF;
|
---|
1777 | return (Sin(input) / ci);
|
---|
1778 | }
|
---|
1779 | /// <summary>
|
---|
1780 | /// Tangens hyperbolicus of float complex input
|
---|
1781 | /// </summary>
|
---|
1782 | /// <param name="input">fcomplex input</param>
|
---|
1783 | /// <returns>Tangens hyperbolicus</returns>
|
---|
1784 | public static fcomplex Tanh(fcomplex input) {
|
---|
1785 | fcomplex si = Sin(input);
|
---|
1786 | if (si.real == (float)0.0 && si.imag == (float)0.0)
|
---|
1787 | return INF;
|
---|
1788 | return (Cos(input) / si);
|
---|
1789 | }
|
---|
1790 | /// <summary>
|
---|
1791 | /// Logarithm of complex input
|
---|
1792 | /// </summary>
|
---|
1793 | /// <param name="input">fcomplex input</param>
|
---|
1794 | /// <returns>Logarithm of input</returns>
|
---|
1795 | public static fcomplex Log(fcomplex input) {
|
---|
1796 | fcomplex ret = new fcomplex ();
|
---|
1797 | ret.real = (float) Math.Log ( Math.Sqrt ( input.real * input.real + input.imag * input.imag ) );
|
---|
1798 | ret.imag = (float) Math.Atan2 ( input.imag, input.real );
|
---|
1799 | return ret;
|
---|
1800 | }
|
---|
1801 | /// <summary>
|
---|
1802 | /// Logarithm to base 10
|
---|
1803 | /// </summary>
|
---|
1804 | /// <param name="input">fcomplex input</param>
|
---|
1805 | /// <returns>Logarithm of input</returns>
|
---|
1806 | public static fcomplex Log10(fcomplex input) {
|
---|
1807 | return Log(input) / 2.30258509299405f;
|
---|
1808 | }
|
---|
1809 | /// <summary>
|
---|
1810 | /// Logarithm of base 2
|
---|
1811 | /// </summary>
|
---|
1812 | /// <param name="input">fcomplex input</param>
|
---|
1813 | /// <returns>Logarithm of input</returns>
|
---|
1814 | public static fcomplex Log2(fcomplex input) {
|
---|
1815 | return Log(input) / 0.693147180559945f;
|
---|
1816 | }
|
---|
1817 | /// <summary>
|
---|
1818 | /// Logarithm of real input
|
---|
1819 | /// </summary>
|
---|
1820 | /// <param name="input">float input - may be negative</param>
|
---|
1821 | /// <returns>Complex logarithm</returns>
|
---|
1822 | public static fcomplex Log(float input) {
|
---|
1823 | return Log (new fcomplex(input,0.0f));
|
---|
1824 | }
|
---|
1825 | /// <summary>
|
---|
1826 | /// Logarithm of base 10 of real input
|
---|
1827 | /// </summary>
|
---|
1828 | /// <param name="input">float input - may be negative</param>
|
---|
1829 | /// <returns>Complex logarithm of base 10</returns>
|
---|
1830 | public static fcomplex Log10(float input) {
|
---|
1831 | return Log(new fcomplex(input,0.0f)) / 2.30258509299405f;
|
---|
1832 | }
|
---|
1833 | /// <summary>
|
---|
1834 | /// Logarithm of base 2
|
---|
1835 | /// </summary>
|
---|
1836 | /// <param name="input">float input - may be negative</param>
|
---|
1837 | /// <returns>Complex logarithm of base 2</returns>
|
---|
1838 | public static fcomplex Log2(float input) {
|
---|
1839 | return Log(new fcomplex(input,0.0f)) / 0.693147180559945f;
|
---|
1840 | }
|
---|
1841 | /// <summary>
|
---|
1842 | /// Convert from polar to cartesian form
|
---|
1843 | /// </summary>
|
---|
1844 | /// <param name="magnitude">Magnitude</param>
|
---|
1845 | /// <param name="angle">Angle</param>
|
---|
1846 | /// <returns>fcomplex number with magnitude <c>magnitude</c>
|
---|
1847 | /// and phase <c>angle</c></returns>
|
---|
1848 | public static fcomplex FromPol(float magnitude, float angle) {
|
---|
1849 | return new fcomplex (
|
---|
1850 | (magnitude * (float)Math.Cos ( angle )),
|
---|
1851 | (magnitude * (float)Math.Sin ( angle ))
|
---|
1852 | );
|
---|
1853 | }
|
---|
1854 | /// <summary>
|
---|
1855 | /// Convert this float complex number to string
|
---|
1856 | /// </summary>
|
---|
1857 | /// <returns>String representation of this float complex number</returns>
|
---|
1858 | public override String ToString() {
|
---|
1859 | if (imag>=0)
|
---|
1860 | return String.Format("{0} + {1}i",real,imag);
|
---|
1861 | else
|
---|
1862 | return String.Format("{0} {1}i",real,imag);
|
---|
1863 | }
|
---|
1864 | private static string m_precSpecI = "";
|
---|
1865 | private static string m_precSpecR = "";
|
---|
1866 | private static int m_lastDigits = 0;
|
---|
1867 | /// <summary>
|
---|
1868 | /// Print formated output of this number, determine number of digits
|
---|
1869 | /// </summary>
|
---|
1870 | /// <param name="digits">Number of digits</param>
|
---|
1871 | /// <returns>Formatted output</returns>
|
---|
1872 | public string ToString(int digits) {
|
---|
1873 | if (digits < 1) return "";
|
---|
1874 | if (digits != m_lastDigits) {
|
---|
1875 | m_lastDigits = digits;
|
---|
1876 | m_precSpecR = String.Format("{{0:f{0}}}",digits);
|
---|
1877 | m_precSpecI = String.Format("{{1:f{0}}}i",digits);
|
---|
1878 | }
|
---|
1879 | if (imag >= 0) {
|
---|
1880 | return String.Format(m_precSpecR+"+"+m_precSpecI,real,imag);
|
---|
1881 | } else {
|
---|
1882 | return String.Format(m_precSpecR+m_precSpecI,real,imag);
|
---|
1883 | }
|
---|
1884 | }
|
---|
1885 | /// <summary>
|
---|
1886 | /// Magnitude of this float complex number
|
---|
1887 | /// </summary>
|
---|
1888 | /// <returns>Magnitude</returns>
|
---|
1889 | public float Abs() {
|
---|
1890 | return (float)Math.Sqrt(real * real + imag * imag);
|
---|
1891 | }
|
---|
1892 | /// <summary>
|
---|
1893 | /// Phase angle of this float complex number
|
---|
1894 | /// </summary>
|
---|
1895 | /// <returns>Phase angle </returns>
|
---|
1896 | public double Angle() {
|
---|
1897 | return (float)Math.Atan2(imag, real);
|
---|
1898 | }
|
---|
1899 | /// <summary>
|
---|
1900 | /// Arcus cosinus of this float complex number
|
---|
1901 | /// </summary>
|
---|
1902 | /// <returns>Arcus cosinus</returns>
|
---|
1903 | public fcomplex Acos() {
|
---|
1904 | fcomplex ret = new fcomplex(0, -1);
|
---|
1905 | return fcomplex.Log(fcomplex.Sqrt(this * this - 1)
|
---|
1906 | + this) * ret;
|
---|
1907 | }
|
---|
1908 | /// <summary>
|
---|
1909 | /// Arcus sinus of this float complex number
|
---|
1910 | /// </summary>
|
---|
1911 | /// <returns>Arcus sinus</returns>
|
---|
1912 | public fcomplex Asin() {
|
---|
1913 | fcomplex ret = Acos(this);
|
---|
1914 | ret.real = (float)(Math.PI / 2 - ret.real);
|
---|
1915 | return ret;
|
---|
1916 | }
|
---|
1917 | /// <summary>
|
---|
1918 | /// Arcus tangens of float complex number
|
---|
1919 | /// </summary>
|
---|
1920 | /// <param name="input">fcomplex input</param>
|
---|
1921 | /// <returns>Arcus tangens of input</returns>
|
---|
1922 | public static fcomplex Atan(fcomplex input) {
|
---|
1923 | fcomplex ret = new fcomplex(0, (float)0.5);
|
---|
1924 | return (ret * Log((fcomplex.i + input) / (fcomplex.i - input)));
|
---|
1925 | }
|
---|
1926 | /// <summary>
|
---|
1927 | /// Round towards next greater integer
|
---|
1928 | /// </summary>
|
---|
1929 | /// <param name="input">fcomplex input</param>
|
---|
1930 | /// <returns>Rounded float complex number</returns>
|
---|
1931 | /// <remarks>Real and imaginary parts are independently rounded
|
---|
1932 | /// towards the next integer value towards positive infinity.</remarks>
|
---|
1933 | public static fcomplex Ceiling (fcomplex input){
|
---|
1934 | return new fcomplex(
|
---|
1935 | (float)Math.Ceiling(input.real),
|
---|
1936 | (float)Math.Ceiling(input.imag)
|
---|
1937 | );
|
---|
1938 | }
|
---|
1939 | /// <summary>
|
---|
1940 | /// Round towards next lower integer
|
---|
1941 | /// </summary>
|
---|
1942 | /// <param name="input">fcomplex input</param>
|
---|
1943 | /// <returns>Rounded float complex number</returns>
|
---|
1944 | /// <remarks>Real and imaginary parts are independently rounded
|
---|
1945 | /// towards the next integer value towards negative infinity.</remarks>
|
---|
1946 | public static fcomplex Floor (fcomplex input){
|
---|
1947 | return new fcomplex(
|
---|
1948 | (float)Math.Floor(input.real),
|
---|
1949 | (float)Math.Floor(input.imag)
|
---|
1950 | );
|
---|
1951 | }
|
---|
1952 | /// <summary>
|
---|
1953 | /// Round mercantilistic
|
---|
1954 | /// </summary>
|
---|
1955 | /// <param name="input">fcomplex number</param>
|
---|
1956 | /// <returns>Rounded number</returns>
|
---|
1957 | /// <remarks>Real and imaginaty parts are rounded independently. </remarks>
|
---|
1958 | public static fcomplex Round (fcomplex input){
|
---|
1959 | return new fcomplex(
|
---|
1960 | (float)Math.Round(input.real),
|
---|
1961 | (float)Math.Round(input.imag)
|
---|
1962 | );
|
---|
1963 | }
|
---|
1964 | /// <summary>
|
---|
1965 | /// Signum function
|
---|
1966 | /// </summary>
|
---|
1967 | /// <param name="input">fcomplex input</param>
|
---|
1968 | /// <returns> Signum of input</returns>
|
---|
1969 | /// <remarks>
|
---|
1970 | /// For numbers a = 0.0 + 0.0i, sign(a)'s real and imag parts are 0.0.
|
---|
1971 | /// For all other numbers sign(a) is the projection onto the unit circle.</remarks>
|
---|
1972 | public static fcomplex Sign(fcomplex input){
|
---|
1973 | if (input.real == 0.0 && input.imag == 0.0)
|
---|
1974 | return new fcomplex();
|
---|
1975 | else {
|
---|
1976 | float mag = (float)Math.Sqrt(input.real * input.real + input.imag * input.imag);
|
---|
1977 | return new fcomplex(
|
---|
1978 | input.real / mag,
|
---|
1979 | input.imag / mag);
|
---|
1980 | }
|
---|
1981 | }
|
---|
1982 | /// <summary>
|
---|
1983 | /// Truncate a floating point complex value
|
---|
1984 | /// </summary>
|
---|
1985 | /// <param name="input">fcomplex input</param>
|
---|
1986 | /// <returns>Integer part of input</returns>
|
---|
1987 | /// <remarks>Operates on real and imaginary parts seperately.</remarks>
|
---|
1988 | public static fcomplex Truncate (fcomplex input){
|
---|
1989 | return new fcomplex(
|
---|
1990 | (float)Math.Truncate(input.real),
|
---|
1991 | (float)Math.Truncate(input.imag)
|
---|
1992 | );
|
---|
1993 | }
|
---|
1994 | /// <summary>
|
---|
1995 | /// Cosinus
|
---|
1996 | /// </summary>
|
---|
1997 | /// <param name="input">fcomplex input</param>
|
---|
1998 | /// <returns>Cosinus of input</returns>
|
---|
1999 | /// <remarks><para>The cosinus is computed by the trigonometric euler equation: </para>
|
---|
2000 | /// <para>0.5 * [exp(i input) + exp(-i input)]</para></remarks>
|
---|
2001 | public static fcomplex Cos(fcomplex input) {
|
---|
2002 | fcomplex i = new fcomplex(0, 1.0f);
|
---|
2003 | fcomplex ni = new fcomplex(0, -1.0f);
|
---|
2004 | return (Exp(i * input) + Exp(ni * input)) / 2.0f;
|
---|
2005 | }
|
---|
2006 | /// <summary>
|
---|
2007 | /// Cosinus hyperbolicus
|
---|
2008 | /// </summary>
|
---|
2009 | /// <param name="input">fcomplex input</param>
|
---|
2010 | /// <returns>Cosinus hyperbolicus of input</returns>
|
---|
2011 | /// <remarks><para>The cosinus is computed by the trigonometric euler equation: </para>
|
---|
2012 | /// <para>(Exp(input) + Exp(-1.0 * input)) / 2.0</para></remarks>
|
---|
2013 | public static fcomplex Cosh(fcomplex input) {
|
---|
2014 | return (Exp(input) + Exp(-1.0f * input)) / 2.0f;
|
---|
2015 | }
|
---|
2016 | /// <summary>
|
---|
2017 | /// Sinus
|
---|
2018 | /// </summary>
|
---|
2019 | /// <param name="input">fcomplex input</param>
|
---|
2020 | /// <returns>Sinus of input</returns>
|
---|
2021 | /// <remarks><para>The sinus is computed by the trigonometric euler equation: </para>
|
---|
2022 | /// <para>(Exp(i * input) - Exp(-1.0 * i * input)) / (2.0 * i)</para></remarks>
|
---|
2023 | public static fcomplex Sin(fcomplex input) {
|
---|
2024 | fcomplex i = new fcomplex(0, (float)1.0);
|
---|
2025 | fcomplex mi = new fcomplex(0, (float)-1.0);
|
---|
2026 | return (Exp(i * input) - Exp(mi * input)) / (2.0 * i);
|
---|
2027 | }
|
---|
2028 | /// <summary>
|
---|
2029 | /// Sinus hyperbolicus
|
---|
2030 | /// </summary>
|
---|
2031 | /// <param name="input">fcomplex input</param>
|
---|
2032 | /// <returns>Sinus hyperbolicus of input</returns>
|
---|
2033 | /// <remarks><para>The sinus hyperbolicus is computed by the trigonometric euler equation: </para>
|
---|
2034 | /// <para>(Exp(input) - Exp(-1.0 * input)) / 2.0</para></remarks>
|
---|
2035 | public static fcomplex Sinh(fcomplex input) {
|
---|
2036 | fcomplex ret = new fcomplex(0, 2);
|
---|
2037 | fcomplex i = new fcomplex(0, (float)1.0);
|
---|
2038 | fcomplex mi = new fcomplex(0, (float)-1.0);
|
---|
2039 | return (Exp(input) - Exp(-1.0 * input)) / 2.0;
|
---|
2040 | }
|
---|
2041 | /// <summary>
|
---|
2042 | /// Exponential / power of base e
|
---|
2043 | /// </summary>
|
---|
2044 | /// <returns>Power of base e</returns>
|
---|
2045 | public fcomplex Exp() {
|
---|
2046 | return fcomplex.FromPol((float)Math.Exp(real), imag);
|
---|
2047 | }
|
---|
2048 | /// <summary>
|
---|
2049 | /// Power of fcomplex number, real exponent
|
---|
2050 | /// </summary>
|
---|
2051 | /// <param name="exponent">Exponent</param>
|
---|
2052 | /// <returns>New fcomplex number with result</returns>
|
---|
2053 | public fcomplex Pow(double exponent) {
|
---|
2054 | fcomplex ret = Log();
|
---|
2055 | ret.imag *= (float)exponent;
|
---|
2056 | ret.real *= (float)exponent;
|
---|
2057 | return ret.Exp();
|
---|
2058 | }
|
---|
2059 | /// <summary>
|
---|
2060 | /// Power of fcomplex number, complex exponent
|
---|
2061 | /// </summary>
|
---|
2062 | /// <param name="exponent">Exponent</param>
|
---|
2063 | /// <returns>New fcomplex number with result</returns>
|
---|
2064 | public fcomplex Pow(fcomplex exponent) {
|
---|
2065 | fcomplex ret = (Log() * exponent);
|
---|
2066 | return ret.Exp();
|
---|
2067 | }
|
---|
2068 | /// <summary>
|
---|
2069 | /// Square root of fcomplex number
|
---|
2070 | /// </summary>
|
---|
2071 | /// <returns>Square root</returns>
|
---|
2072 | public fcomplex Sqrt() {
|
---|
2073 | // Reference : numerical recipes in C: Appendix C
|
---|
2074 | fcomplex ret = new fcomplex();
|
---|
2075 | double x, y, w, r;
|
---|
2076 | if ( real == 0.0 && imag == 0.0)
|
---|
2077 | return ret;
|
---|
2078 | else {
|
---|
2079 | x = (float)Math.Abs(real);
|
---|
2080 | y = (float)Math.Abs( imag);
|
---|
2081 | if (x >= y) {
|
---|
2082 | r = y / x;
|
---|
2083 | w = Math.Sqrt(x) * Math.Sqrt(0.5 * (1.0 + Math.Sqrt(1.0 + r * r)));
|
---|
2084 | } else {
|
---|
2085 | r = x / y;
|
---|
2086 | w = Math.Sqrt(y) * Math.Sqrt(0.5 * (r + Math.Sqrt(1.0 + r * r)));
|
---|
2087 | }
|
---|
2088 | if ( real >= 0.0) {
|
---|
2089 | ret.real = (float)w;
|
---|
2090 | ret.imag = (float)( imag / (2.0 * w));
|
---|
2091 | } else {
|
---|
2092 | ret.imag = (float)(( imag >= 0) ? w : -w);
|
---|
2093 | ret.real = (float)( imag / (2.0 * ret.imag));
|
---|
2094 | }
|
---|
2095 | return ret;
|
---|
2096 | }
|
---|
2097 | }
|
---|
2098 | /// <summary>
|
---|
2099 | /// Logarithm of fcomplex number
|
---|
2100 | /// </summary>
|
---|
2101 | /// <returns>Natural logarithm</returns>
|
---|
2102 | /// <remarks>The logarithm of a complex number A is defined as follows: <br />
|
---|
2103 | /// <list type="none"><item>real part: log(abs(A))</item>
|
---|
2104 | /// <item>imag part: Atan2(imag(A),real(A))</item></list>
|
---|
2105 | /// </remarks>
|
---|
2106 | public fcomplex Log() {
|
---|
2107 | fcomplex ret = new fcomplex();
|
---|
2108 | ret.real = (float)Math.Log(Math.Sqrt( real * real + imag * imag));
|
---|
2109 | ret.imag = (float)Math.Atan2( imag, real);
|
---|
2110 | return ret;
|
---|
2111 | }
|
---|
2112 | /// <summary>
|
---|
2113 | /// Test if any of real or imaginary parts are NAN's
|
---|
2114 | /// </summary>
|
---|
2115 | /// <param name="input">fcomplex input</param>
|
---|
2116 | /// <returns>true if any of real or imag part is not a number</returns>
|
---|
2117 | public static bool IsNaN(fcomplex input) {
|
---|
2118 | if (Single.IsNaN(input.real) || Single.IsNaN(input.imag))
|
---|
2119 | return true;
|
---|
2120 | else
|
---|
2121 | return false;
|
---|
2122 | }
|
---|
2123 | /// <summary>
|
---|
2124 | /// Test if any of real or imaginary parts are infinite
|
---|
2125 | /// </summary>
|
---|
2126 | /// <param name="input">fcomplex input</param>
|
---|
2127 | /// <returns>true if any of real or imag part is infinite</returns>
|
---|
2128 | public static bool IsInfinity(fcomplex input) {
|
---|
2129 | if (Single.IsInfinity(input.real) || Single.IsInfinity(input.imag))
|
---|
2130 | return true;
|
---|
2131 | else
|
---|
2132 | return false;
|
---|
2133 | }
|
---|
2134 | /// <summary>
|
---|
2135 | /// Test if any of real or imaginary parts are pos. infinite
|
---|
2136 | /// </summary>
|
---|
2137 | /// <param name="input">fcomplex input</param>
|
---|
2138 | /// <returns>true if any of real or imag part is positive infinite</returns>
|
---|
2139 | public static bool IsPositiveInfinity(fcomplex input) {
|
---|
2140 | if (Single.IsPositiveInfinity(input.real) || Single.IsPositiveInfinity(input.imag))
|
---|
2141 | return true;
|
---|
2142 | else
|
---|
2143 | return false;
|
---|
2144 | }
|
---|
2145 | /// <summary>
|
---|
2146 | /// Test if any of real or imaginary parts are neg. infinite
|
---|
2147 | /// </summary>
|
---|
2148 | /// <param name="input">fcomplex input</param>
|
---|
2149 | /// <returns>true if any of real or imag part is negative infinite</returns>
|
---|
2150 | public static bool IsNegativeInfinity(fcomplex input) {
|
---|
2151 | if (Single.IsNegativeInfinity(input.real) || Single.IsNegativeInfinity(input.imag))
|
---|
2152 | return true;
|
---|
2153 | else
|
---|
2154 | return false;
|
---|
2155 | }
|
---|
2156 | /// <summary>
|
---|
2157 | /// Test if any of real or imaginary parts are finite
|
---|
2158 | /// </summary>
|
---|
2159 | /// <param name="input">fcomplex input</param>
|
---|
2160 | /// <returns>true if any of real and imag part is finite</returns>
|
---|
2161 | public static bool IsFinite (fcomplex input) {
|
---|
2162 | if (ILMath.isfinite(input.real) && ILMath.isfinite(input.imag))
|
---|
2163 | return true;
|
---|
2164 | else
|
---|
2165 | return false;
|
---|
2166 | }
|
---|
2167 |
|
---|
2168 | #region CAST_OPERATORS
|
---|
2169 | /// <summary>
|
---|
2170 | /// Implicit cast real number into complex number
|
---|
2171 | /// </summary>
|
---|
2172 | /// <param name="a">double</param>
|
---|
2173 | /// <returns>fcomplex number with real part equals a</returns>
|
---|
2174 | public static implicit operator fcomplex(double a) {
|
---|
2175 | return new fcomplex((float)a, 0.0F);
|
---|
2176 | }
|
---|
2177 | /// <summary>
|
---|
2178 | /// Implicit cast real number into complex number
|
---|
2179 | /// </summary>
|
---|
2180 | /// <param name="a">float</param>
|
---|
2181 | /// <returns>fcomplex number with real part equals a</returns>
|
---|
2182 | public static implicit operator fcomplex(float a) {
|
---|
2183 | return new fcomplex(a, 0.0F);
|
---|
2184 | }
|
---|
2185 | /// <summary>
|
---|
2186 | /// Implicit cast real number into complex number
|
---|
2187 | /// </summary>
|
---|
2188 | /// <param name="a">byte</param>
|
---|
2189 | /// <returns>fcomplex number with real part equals a</returns>
|
---|
2190 | public static implicit operator fcomplex(byte a) {
|
---|
2191 | return new fcomplex(a, 0.0F);
|
---|
2192 | }
|
---|
2193 | /// <summary>
|
---|
2194 | /// Implicit cast real number into complex number
|
---|
2195 | /// </summary>
|
---|
2196 | /// <param name="a">char</param>
|
---|
2197 | /// <returns>fcomplex number with real part equals a</returns>
|
---|
2198 | public static implicit operator fcomplex(char a) {
|
---|
2199 | return new fcomplex(a, 0.0F);
|
---|
2200 | }
|
---|
2201 | /// <summary>
|
---|
2202 | /// Implicit cast real number into complex number
|
---|
2203 | /// </summary>
|
---|
2204 | /// <param name="a">Int16</param>
|
---|
2205 | /// <returns>fcomplex number with real part equals a</returns>
|
---|
2206 | public static implicit operator fcomplex(Int16 a) {
|
---|
2207 | return new fcomplex(a, 0.0F);
|
---|
2208 | }
|
---|
2209 | /// <summary>
|
---|
2210 | /// Implicit cast real number into complex number
|
---|
2211 | /// </summary>
|
---|
2212 | /// <param name="a">Int32</param>
|
---|
2213 | /// <returns>fcomplex number with real part equals a</returns>
|
---|
2214 | public static implicit operator fcomplex(Int32 a) {
|
---|
2215 | return new fcomplex((float)a, 0.0F);
|
---|
2216 | }
|
---|
2217 | /// <summary>
|
---|
2218 | /// Implicit cast real number into complex number
|
---|
2219 | /// </summary>
|
---|
2220 | /// <param name="a">Int64</param>
|
---|
2221 | /// <returns>fcomplex number with real part equals a</returns>
|
---|
2222 | public static implicit operator fcomplex(Int64 a) {
|
---|
2223 | return new fcomplex((float)a, 0.0F);
|
---|
2224 | }
|
---|
2225 | /// <summary>
|
---|
2226 | /// Implicit cast real number into complex number
|
---|
2227 | /// </summary>
|
---|
2228 | /// <param name="a">UInt16</param>
|
---|
2229 | /// <returns>fcomplex number with real part equals a</returns>
|
---|
2230 | public static implicit operator fcomplex(UInt16 a) {
|
---|
2231 | return new fcomplex((float)a, 0.0F);
|
---|
2232 | }
|
---|
2233 | /// <summary>
|
---|
2234 | /// Implicit cast real number into complex number
|
---|
2235 | /// </summary>
|
---|
2236 | /// <param name="a">UInt32</param>
|
---|
2237 | /// <returns>fcomplex number with real part equals a</returns>
|
---|
2238 | public static implicit operator fcomplex(UInt32 a) {
|
---|
2239 | return new fcomplex((float)a, 0.0F);
|
---|
2240 | }
|
---|
2241 | /// <summary>
|
---|
2242 | /// Implicit cast real number into complex number
|
---|
2243 | /// </summary>
|
---|
2244 | /// <param name="a">UInt64</param>
|
---|
2245 | /// <returns>fcomplex number with real part equals a</returns>
|
---|
2246 | public static implicit operator fcomplex(UInt64 a) {
|
---|
2247 | return new fcomplex((float)a, 0.0F);
|
---|
2248 | }
|
---|
2249 |
|
---|
2250 | /// <summary>
|
---|
2251 | /// Explicit cast complex number into real number
|
---|
2252 | /// </summary>
|
---|
2253 | /// <param name="a">fcomplex number</param>
|
---|
2254 | /// <returns>Real number with real part of a</returns>
|
---|
2255 | public static explicit operator double(fcomplex a) {
|
---|
2256 | return a.real;
|
---|
2257 | }
|
---|
2258 | /// <summary>
|
---|
2259 | /// Explicit cast complex number into real number
|
---|
2260 | /// </summary>
|
---|
2261 | /// <param name="a">fcomplex number</param>
|
---|
2262 | /// <returns>Real number with real part of a</returns>
|
---|
2263 | public static explicit operator float(fcomplex a) {
|
---|
2264 | return (float)a.real;
|
---|
2265 | }
|
---|
2266 | /// <summary>
|
---|
2267 | /// Explicit cast complex number into real number
|
---|
2268 | /// </summary>
|
---|
2269 | /// <param name="a">fcomplex number</param>
|
---|
2270 | /// <returns>Real number with real part of a</returns>
|
---|
2271 | public static explicit operator byte(fcomplex a) {
|
---|
2272 | return (byte) a.real;
|
---|
2273 | }
|
---|
2274 | /// <summary>
|
---|
2275 | /// Explicit cast complex number into real number
|
---|
2276 | /// </summary>
|
---|
2277 | /// <param name="a">fcomplex number</param>
|
---|
2278 | /// <returns>Real number with real part of a</returns>
|
---|
2279 | public static explicit operator char(fcomplex a) {
|
---|
2280 | return (char) a.real;
|
---|
2281 | }
|
---|
2282 | /// <summary>
|
---|
2283 | /// Explicit cast complex number into real number
|
---|
2284 | /// </summary>
|
---|
2285 | /// <param name="a">fcomplex number</param>
|
---|
2286 | /// <returns>Real number with real part of a</returns>
|
---|
2287 | public static explicit operator Int16(fcomplex a) {
|
---|
2288 | return (Int16) a.real;
|
---|
2289 | }
|
---|
2290 | /// <summary>
|
---|
2291 | /// Explicit cast complex number into real number
|
---|
2292 | /// </summary>
|
---|
2293 | /// <param name="a">complex number</param>
|
---|
2294 | /// <returns>Real number with real part of a</returns>
|
---|
2295 | public static explicit operator Int32(fcomplex a) {
|
---|
2296 | return (Int32) a.real;
|
---|
2297 | }
|
---|
2298 | /// <summary>
|
---|
2299 | /// Explicit cast complex number into real number
|
---|
2300 | /// </summary>
|
---|
2301 | /// <param name="a">fcomplex number</param>
|
---|
2302 | /// <returns>Real number with real part of a</returns>
|
---|
2303 | public static explicit operator Int64(fcomplex a) {
|
---|
2304 | return (Int64) a.real;
|
---|
2305 | }
|
---|
2306 | /// <summary>
|
---|
2307 | /// Explicit cast complex number into real number
|
---|
2308 | /// </summary>
|
---|
2309 | /// <param name="a">fcomplex number</param>
|
---|
2310 | /// <returns>Real number with real part of a</returns>
|
---|
2311 | public static explicit operator UInt16(fcomplex a) {
|
---|
2312 | return (UInt16) a.real;
|
---|
2313 | }
|
---|
2314 | /// <summary>
|
---|
2315 | /// Explicit cast complex number into real number
|
---|
2316 | /// </summary>
|
---|
2317 | /// <param name="a">fcomplex number</param>
|
---|
2318 | /// <returns>Real number with real part of a</returns>
|
---|
2319 | public static explicit operator UInt32(fcomplex a) {
|
---|
2320 | return (UInt32) a.real;
|
---|
2321 | }
|
---|
2322 | /// <summary>
|
---|
2323 | /// Explicit cast complex number into real number
|
---|
2324 | /// </summary>
|
---|
2325 | /// <param name="a">fcomplex number</param>
|
---|
2326 | /// <returns>Real number with real part of a</returns>
|
---|
2327 | public static explicit operator UInt64(fcomplex a) {
|
---|
2328 | return (UInt64) a.real;
|
---|
2329 | }
|
---|
2330 | /// <summary>
|
---|
2331 | /// Test if real and imag part are zero
|
---|
2332 | /// </summary>
|
---|
2333 | /// <returns>true if real and imag parts are zero, false else</returns>
|
---|
2334 | public bool iszero() {
|
---|
2335 | if (real == 0.0f && imag == 0.0f)
|
---|
2336 | return true;
|
---|
2337 | else
|
---|
2338 | return false;
|
---|
2339 | }
|
---|
2340 | #endregion CAST_OPERATORS
|
---|
2341 |
|
---|
2342 | }
|
---|
2343 |
|
---|
2344 | }
|
---|