Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/ILNumerics.2.14.4735.573/Misc/ILComplex.cs @ 10573

Last change on this file since 10573 was 9102, checked in by gkronber, 12 years ago

#1967: ILNumerics source for experimentation

File size: 102.6 KB
Line 
1///
2///    This file is part of ILNumerics Community Edition.
3///
4///    ILNumerics Community Edition - high performance computing for applications.
5///    Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
6///
7///    ILNumerics Community Edition is free software: you can redistribute it and/or modify
8///    it under the terms of the GNU General Public License version 3 as published by
9///    the Free Software Foundation.
10///
11///    ILNumerics Community Edition is distributed in the hope that it will be useful,
12///    but WITHOUT ANY WARRANTY; without even the implied warranty of
13///    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14///    GNU General Public License for more details.
15///
16///    You should have received a copy of the GNU General Public License
17///    along with ILNumerics Community Edition. See the file License.txt in the root
18///    of your distribution package. If not, see <http://www.gnu.org/licenses/>.
19///
20///    In addition this software uses the following components and/or licenses:
21///
22///    =================================================================================
23///    The Open Toolkit Library License
24///   
25///    Copyright (c) 2006 - 2009 the Open Toolkit library.
26///   
27///    Permission is hereby granted, free of charge, to any person obtaining a copy
28///    of this software and associated documentation files (the "Software"), to deal
29///    in the Software without restriction, including without limitation the rights to
30///    use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
31///    the Software, and to permit persons to whom the Software is furnished to do
32///    so, subject to the following conditions:
33///
34///    The above copyright notice and this permission notice shall be included in all
35///    copies or substantial portions of the Software.
36///
37///    =================================================================================
38///   
39
40#pragma warning disable 162
41using System;
42using System.Collections.Generic;
43using System.Text;
44using System.Runtime.InteropServices;
45 
46
47
48namespace ILNumerics {
49    /// <summary>
50    /// Floating point complex value data type of double precision
51    /// </summary>
52    /// <remarks>This class extends the system value types for real numbers to complex double
53    /// values. Besides the publicly available members 'real' and 'imag' it provides all the
54    /// basis functionality the floating point system.double brings (abs, log, sqrt, tan etc.),
55    /// as well as it overrides the basic unary and binary operators for all common system value
56    /// types including rarely used types (e.g. UInt16). This includes the basic numerical operations
57    /// like '+','-','/','*' and the relational operators: '==','>','>=' etc. Also there are some
58    /// explicit and some implicit casting operators from / to complex value into system
59    /// value types.</remarks>
60    [Serializable]
61    [StructLayout(LayoutKind.Sequential)]
62    public struct complex : IEquatable<complex> {
63        /// <summary>
64        /// Real part of this complex number
65        /// </summary>
66        public double real;
67        /// <summary>
68        /// Imaginary part of this complex number
69        /// </summary>
70        public double imag;
71        /// <summary>
72        /// Imaginary unit
73        /// </summary>
74        public static readonly complex i = new complex(0.0f,1.0f);
75
76        /// <summary>
77        /// Constructor creating a new complex value
78        /// </summary>
79        /// <param name="real">Real part</param>
80        /// <param name="imag">Imaginary part</param>
81        public complex(double real, double imag) {
82            this.real = real;
83            this.imag = imag;
84        }
85        /// <summary>
86        /// Complex conjugate
87        /// </summary>
88        public complex conj {
89            get{
90                return new complex(real,-imag);
91            }
92        }
93
94        /// <summary>
95        /// Positive infinity for real and imag part of complex value
96        /// </summary>
97       public static complex INF {
98            get {
99                return new complex(
100                    double.PositiveInfinity,
101                    double.PositiveInfinity
102                );
103            }
104        }
105
106        /// <summary>
107        /// New complex, real and imaginary parts are zero
108        /// </summary>
109       public static complex Zero {
110            get {
111                return new complex(0.0,0.0);
112            }
113        }
114
115        /// <summary>
116        /// Complex quantity, marked as being "not a number"
117        /// </summary>
118        public static complex NaN {
119            get {
120                return new complex(double.NaN,double.NaN);
121            }
122        }
123
124        /// <summary>
125        /// Are obj's real and imaginary part identical to the real and imaginary parts of this fcomplex
126        /// </summary>
127        /// <param name="obj">fcomplex object to determine the equality for</param>
128        /// <returns>true if obj is of fcomplex type and its real and imag part has the same
129        /// values as the real and imaginary part of this array.</returns>
130        public override bool Equals(object obj) {
131            if (obj is complex && ((complex)obj) == this)
132                return true;
133            return false;
134        }
135        /// <summary>
136        /// Check if a complex number equals this complex number
137        /// </summary>
138        /// <param name="other">other complex number</param>
139        /// <returns>true if both, real and imaginary parts of both complex number are (binary) equal, false otherwise</returns>
140        public bool Equals(complex other) {
141            return real.Equals(other.real) && imag.Equals(other.imag);
142        }
143        /// <summary>
144        /// Hash code of this comples
145        /// </summary>
146        /// <returns>Hash code of this complex</returns>
147        public override int GetHashCode() {
148            return 77101 * real.GetHashCode() + imag.GetHashCode();
149        }
150
151
152       
153        /// <summary>
154        /// Add two complex numbers
155        /// </summary>
156        /// <param name="A">First summand</param>
157        /// <param name="B">Second summand</param>
158        /// <returns>result</returns>
159        public static  complex operator +( complex A,  complex B) {
160             complex ret;
161             ret.real =   (double) (A.real + B.real );
162             ret.imag =   (double) (A.imag + B.imag );
163            return ret;
164        }
165        /// <summary>
166        /// Subtract two complex values
167        /// </summary>
168        /// <param name="A">Minuend</param>
169        /// <param name="B">Subtrahend</param>
170        /// <returns>result</returns>
171        public static  complex operator -( complex A,  complex B) {
172             complex ret;
173            ret.real =  (double) (A.real  - B.real );
174            ret.imag =  (double) (A.imag - B.imag );
175            return ret;
176        }
177        /// <summary>
178        /// Multiply two complex values
179        /// </summary>
180        /// <param name="A">First factor</param>
181        /// <param name="B">Second factor</param>
182        /// <returns>result</returns>
183        public static  complex operator *( complex A,  complex B) {
184             complex ret;
185            ret.real =  (double) ((A.real * B.real ) - (A.imag * B.imag ));
186            ret.imag =  (double) ((A.real * B.imag ) + (A.imag * B.real ));
187            return ret;
188        }
189        /// <summary>
190        /// Divide two numbers
191        /// </summary>
192        /// <param name="A">Divident</param>
193        /// <param name="B">Divisor</param>
194        /// <returns>Result</returns>
195        /// <remarks><para>Unless the operator must handle special inputs (Inf or 0 values),
196        /// the algorithm described in [1] is used for division. This is considered to be
197        /// more robust against floating point overflow than the naive approach of simple
198        /// cartesian division.</para>
199        /// <para>References: [1]: Smith, R.L., Algorithm 116: Complex division. Commun.ACM 5,8 (1962),435 <br />
200        /// [2]: Stewart, G.W., A note on complex division, ACM trans.on math software, Vol.11, N.3 (1985)</para></remarks>
201        public static  complex operator /( complex A,  complex B) {
202            if (B.imag == 0) return A / B.real;
203            return A * (1 / B);
204            if (IsNaN(A) ||  complex .IsNaN(B)) return NaN;
205            //if ( complex .IsInfinity(B)) return NaN;           
206            //if (A.real == 0 && A.imag == 0) return ( complex )0;
207             complex ret;
208            if (B.real == 0) {
209                ret.imag =  (double) -(A.real / B.imag);
210                ret.real =  (double) (A.imag / B.imag);
211                return ret;
212            }
213            // this would be the naive approach. But it come with to little robustness against overflow
214            //double norm2 = B.real * B.real + B.imag * B.imag;
215            //if (norm2 == 0) return INF;    // this may be removed, since division by 0 results in inf anyway ?
216            //ret.real =  (double) (((A.real  * B.real ) + (A.imag  * B.imag )) / norm2);
217            //ret.imag =  (double) (((A.imag  * B.real ) - (A.real  * B.imag )) / norm2);
218           
219            // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
220            // did not show any advantage when using double precision floating point arithmetic.
221             double tmp1, tmp2;
222            if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
223                tmp1 =  (double) (B.imag * (1/B.real));
224                tmp2 =  (double) (B.real + B.imag*tmp1);
225                ret.real =  (double) (A.real + A.imag*tmp1)/tmp2;
226                ret.imag =  (double) (A.imag - A.real*tmp1)/tmp2;
227            } else {
228                tmp1 =  (double) (B.real * (1/B.imag));
229                tmp2 =  (double) (B.imag + B.real*tmp1);
230                ret.real =  (double) (A.imag + A.real*tmp1)/tmp2;
231                ret.imag = -  (double) (A.real - A.imag*tmp1)/tmp2;
232            }
233            return ret;                                           
234        }
235        /// <summary>
236        /// Equality comparison for complex numbers
237        /// </summary>
238        /// <param name="A">Left side</param>
239        /// <param name="B">Right side</param>
240        /// <returns>true, if real and imaginary part are identical</returns>
241        public static bool operator ==( complex A,  complex B) {
242            return (A.imag  == B.imag ) && (A.real  == B.real );
243        }
244        /// <summary>
245        /// Unequality comparison for complex numbers
246        /// </summary>
247        /// <param name="A">Left side</param>
248        /// <param name="B">Right side</param>
249        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
250        public static bool operator !=( complex A,  complex B) {
251            return (A.imag  != B.imag ) || (A.real  != B.real );
252        }
253        /// <summary>
254        /// Greater than comparison for complex numbers
255        /// </summary>
256        /// <param name="A">Left side</param>
257        /// <param name="B">Right side</param>
258        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
259        /// <remarks>Only the real parts are compared!</remarks>
260        public static bool operator > ( complex A,  complex B) {
261            return (A.real > B.real );
262        }
263        /// <summary>
264        /// Lower than comparison for complex numbers
265        /// </summary>
266        /// <param name="A">Left side</param>
267        /// <param name="B">Right side</param>
268        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
269        /// <remarks>Only the real parts are compared!</remarks>
270        public static bool operator < ( complex A,  complex B) {
271            return (A.real < B.real );
272        }
273        /// <summary>
274        /// Greater than or equal to comparison for complex numbers
275        /// </summary>
276        /// <param name="A">Left side</param>
277        /// <param name="B">Right side</param>
278        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
279        /// <remarks>Only the real parts are compared!</remarks>
280        public static bool operator >=( complex A,  complex B) {
281            return (A.real >= B.real );
282        }
283        /// <summary>
284        /// Lower than or equal to comparison for complex numbers
285        /// </summary>
286        /// <param name="A">Left side</param>
287        /// <param name="B">Right side</param>
288        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
289        /// <remarks>Only the real parts are compared!</remarks>
290        public static bool operator <=( complex A,  complex B) {
291            return (A.real <= B.real );
292        }
293
294#region HYCALPER AUTO GENERATED CODE
295
296       
297        /// <summary>
298        /// Add two complex numbers
299        /// </summary>
300        /// <param name="A">First summand</param>
301        /// <param name="B">Second summand</param>
302        /// <returns>result</returns>
303        public static  complex operator +( complex A,  fcomplex B) {
304            complex ret;
305             ret.real =  (double) (A.real + B.real );
306             ret.imag =  (double) (A.imag + B.imag );
307            return ret;
308        }
309        /// <summary>
310        /// Subtract two complex values
311        /// </summary>
312        /// <param name="A">Minuend</param>
313        /// <param name="B">Subtrahend</param>
314        /// <returns>result</returns>
315        public static  complex operator -( complex A,  fcomplex B) {
316            complex ret;
317            ret.real =  (double) (A.real  - B.real );
318            ret.imag =  (double) (A.imag - B.imag );
319            return ret;
320        }
321        /// <summary>
322        /// Multiply two complex values
323        /// </summary>
324        /// <param name="A">First factor</param>
325        /// <param name="B">Second factor</param>
326        /// <returns>result</returns>
327        public static  complex operator *( complex A,  fcomplex B) {
328            complex ret;
329            ret.real =  (double) ((A.real * B.real ) - (A.imag * B.imag ));
330            ret.imag =  (double) ((A.real * B.imag ) + (A.imag * B.real ));
331            return ret;
332        }
333        /// <summary>
334        /// Divide two numbers
335        /// </summary>
336        /// <param name="A">Divident</param>
337        /// <param name="B">Divisor</param>
338        /// <returns>Result</returns>
339        /// <remarks><para>Unless the operator must handle special inputs (Inf or 0 values),
340        /// the algorithm described in [1] is used for division. This is considered to be
341        /// more robust against floating point overflow than the naive approach of simple
342        /// cartesian division.</para>
343        /// <para>References: [1]: Smith, R.L., Algorithm 116: Complex division. Commun.ACM 5,8 (1962),435 <br />
344        /// [2]: Stewart, G.W., A note on complex division, ACM trans.on math software, Vol.11, N.3 (1985)</para></remarks>
345        public static  complex operator /( complex A,  fcomplex B) {
346            if (B.imag == 0) return A / B.real;
347            return A * (1 / B);
348            if (IsNaN(A) ||  fcomplex .IsNaN(B)) return NaN;
349            //if ( fcomplex .IsInfinity(B)) return NaN;           
350            //if (A.real == 0 && A.imag == 0) return ( complex )0;
351            complex ret;
352            if (B.real == 0) {
353                ret.imag =  (double) -(A.real / B.imag);
354                ret.real =  (double) (A.imag / B.imag);
355                return ret;
356            }
357            // this would be the naive approach. But it come with to little robustness against overflow
358            //double norm2 = B.real * B.real + B.imag * B.imag;
359            //if (norm2 == 0) return INF;    // this may be removed, since division by 0 results in inf anyway ?
360            //ret.real =  (double) (((A.real  * B.real ) + (A.imag  * B.imag )) / norm2);
361            //ret.imag =  (double) (((A.imag  * B.real ) - (A.real  * B.imag )) / norm2);
362           
363            // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
364            // did not show any advantage when using double precision floating point arithmetic.
365            double tmp1, tmp2;
366            if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
367                tmp1 =  (double) (B.imag * (1/B.real));
368                tmp2 =  (double) (B.real + B.imag*tmp1);
369                ret.real =  (double) (A.real + A.imag*tmp1)/tmp2;
370                ret.imag =  (double) (A.imag - A.real*tmp1)/tmp2;
371            } else {
372                tmp1 =  (double) (B.real * (1/B.imag));
373                tmp2 =  (double) (B.imag + B.real*tmp1);
374                ret.real =  (double) (A.imag + A.real*tmp1)/tmp2;
375                ret.imag = -  (double) (A.real - A.imag*tmp1)/tmp2;
376            }
377            return ret;                                           
378        }
379        /// <summary>
380        /// Equality comparison for complex numbers
381        /// </summary>
382        /// <param name="A">Left side</param>
383        /// <param name="B">Right side</param>
384        /// <returns>true, if real and imaginary part are identical</returns>
385        public static bool operator ==( complex A,  fcomplex B) {
386            return (A.imag  == B.imag ) && (A.real  == B.real );
387        }
388        /// <summary>
389        /// Unequality comparison for complex numbers
390        /// </summary>
391        /// <param name="A">Left side</param>
392        /// <param name="B">Right side</param>
393        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
394        public static bool operator !=( complex A,  fcomplex B) {
395            return (A.imag  != B.imag ) || (A.real  != B.real );
396        }
397        /// <summary>
398        /// Greater than comparison for complex numbers
399        /// </summary>
400        /// <param name="A">Left side</param>
401        /// <param name="B">Right side</param>
402        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
403        /// <remarks>Only the real parts are compared!</remarks>
404        public static bool operator > ( complex A,  fcomplex B) {
405            return (A.real > B.real );
406        }
407        /// <summary>
408        /// Lower than comparison for complex numbers
409        /// </summary>
410        /// <param name="A">Left side</param>
411        /// <param name="B">Right side</param>
412        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
413        /// <remarks>Only the real parts are compared!</remarks>
414        public static bool operator < ( complex A,  fcomplex B) {
415            return (A.real < B.real );
416        }
417        /// <summary>
418        /// Greater than or equal to comparison for complex numbers
419        /// </summary>
420        /// <param name="A">Left side</param>
421        /// <param name="B">Right side</param>
422        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
423        /// <remarks>Only the real parts are compared!</remarks>
424        public static bool operator >=( complex A,  fcomplex B) {
425            return (A.real >= B.real );
426        }
427        /// <summary>
428        /// Lower than or equal to comparison for complex numbers
429        /// </summary>
430        /// <param name="A">Left side</param>
431        /// <param name="B">Right side</param>
432        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
433        /// <remarks>Only the real parts are compared!</remarks>
434        public static bool operator <=( complex A,  fcomplex B) {
435            return (A.real <= B.real );
436        }
437
438#endregion HYCALPER AUTO GENERATED CODE
439
440
441       
442        /// <summary>
443        /// Add two complex numbers
444        /// </summary>
445        /// <param name="A">First summand</param>
446        /// <param name="B">Second summand</param>
447        /// <returns>Result</returns>
448        public static  complex operator +( complex A,  double B) {
449             complex ret;
450            ret.real =  (double) (A.real + B);
451            ret.imag =  (double) A.imag;
452            return ret;
453        }
454        /// <summary>
455        /// Subtract two values
456        /// </summary>
457        /// <param name="A">Minuend</param>
458        /// <param name="B">Subtrahend</param>
459        /// <returns>result</returns>
460        public static  complex operator -( complex A,  double B) {
461             complex ret;
462            ret.real =  (double) (A.real - B);
463            ret.imag =  (double) A.imag;
464            return ret;
465        }
466        /// <summary>
467        /// Multiply two values
468        /// </summary>
469        /// <param name="A">First factor</param>
470        /// <param name="B">Second factor</param>
471        /// <returns>result</returns>
472        public static  complex operator *( complex A,  double B) {
473             complex ret;
474            ret.real =  (double) (A.real * B);
475            ret.imag =  (double) (A.imag * B);
476            return ret;
477        }
478        /// <summary>
479        /// Divide two numbers
480        /// </summary>
481        /// <param name="A">Divident</param>
482        /// <param name="B">Divisor</param>
483        /// <returns>result</returns>
484        public static  complex operator /( complex A,  double B) {
485            if (IsNaN(A)) return NaN;
486           
487            if (double.IsNaN(B)) return NaN;
488            if (A.real == 0 && A.imag == 0) {
489                if (B == 0) return NaN;
490                return ( complex )0;
491            } else {
492               
493                if (double .IsInfinity(B))
494                {
495                    if (IsInfinity(A)) {
496                        return NaN;
497                    } else {
498                        return ( complex )0;
499                    }
500                }
501            }
502             complex ret;
503            if (B == 0) return INF ;
504            ret.real =  (double) (A.real / B);
505            ret.imag =  (double) (A.imag / B);
506            return ret;
507        }
508        /// <summary>
509        /// Equality comparison for complex numbers
510        /// </summary>
511        /// <param name="A">Left side</param>
512        /// <param name="B">Right side</param>
513        /// <returns>result</returns>
514        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
515        public static bool operator ==( complex A,  double B) {
516            return (A.real == B && A.imag == 0.0);
517        }
518        /// <summary>
519        /// Unequality comparison for complex numbers
520        /// </summary>
521        /// <param name="A">Left side</param>
522        /// <param name="B">Right side</param>
523        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
524        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
525        public static bool operator !=( complex A,  double B) {
526            return (A.imag != 0.0) || (A.real != B);
527        }
528        /// <summary>
529        /// Freater than comparison for complex numbers
530        /// </summary>
531        /// <param name="A">Left side</param>
532        /// <param name="B">Right side</param>
533        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
534        /// <remarks>Only the real parts are compared!</remarks>
535        public static bool operator > ( complex A,  double B) {
536            return (A.real > B);
537        }
538        /// <summary>
539        /// Lower than comparison for complex numbers
540        /// </summary>
541        /// <param name="A">Left side</param>
542        /// <param name="B">Right side</param>
543        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
544        /// <remarks>Only the real parts are compared!</remarks>
545        public static bool operator <(  complex A,  double B) {
546            return (A.real < B);
547        }
548        /// <summary>
549        /// Greater than or equal to comparison for complex numbers
550        /// </summary>
551        /// <param name="A">Left side</param>
552        /// <param name="B">Right side</param>
553        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
554        /// <remarks>Only the real parts are compared!</remarks>
555        public static bool operator >=( complex A,  double B) {
556            return (A.real >= B);
557        }
558        /// <summary>
559        /// Lower than or equal to comparison for complex numbers
560        /// </summary>
561        /// <param name="A">Left side</param>
562        /// <param name="B">Right side</param>
563        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
564        /// <remarks>Only the real parts are compared!</remarks>
565        public static bool operator <=( complex A,  double B) {
566            return (A.real <= B);
567        }
568
569#region HYCALPER AUTO GENERATED CODE
570
571       
572        /// <summary>
573        /// Add two complex numbers
574        /// </summary>
575        /// <param name="A">First summand</param>
576        /// <param name="B">Second summand</param>
577        /// <returns>Result</returns>
578        public static  complex operator +( complex A,  Int64 B) {
579            complex ret;
580            ret.real =  (double) (A.real + B);
581            ret.imag =  (double) A.imag;
582            return ret;
583        }
584        /// <summary>
585        /// Subtract two values
586        /// </summary>
587        /// <param name="A">Minuend</param>
588        /// <param name="B">Subtrahend</param>
589        /// <returns>result</returns>
590        public static  complex operator -( complex A,  Int64 B) {
591            complex ret;
592            ret.real =  (double) (A.real - B);
593            ret.imag =  (double) A.imag;
594            return ret;
595        }
596        /// <summary>
597        /// Multiply two values
598        /// </summary>
599        /// <param name="A">First factor</param>
600        /// <param name="B">Second factor</param>
601        /// <returns>result</returns>
602        public static  complex operator *( complex A,  Int64 B) {
603            complex ret;
604            ret.real =  (double) (A.real * B);
605            ret.imag =  (double) (A.imag * B);
606            return ret;
607        }
608        /// <summary>
609        /// Divide two numbers
610        /// </summary>
611        /// <param name="A">Divident</param>
612        /// <param name="B">Divisor</param>
613        /// <returns>result</returns>
614        public static  complex operator /( complex A,  Int64 B) {
615            if (IsNaN(A)) return NaN;
616           
617            if (A.real == 0 && A.imag == 0) {
618                if (B == 0) return NaN;
619                return ( complex )0;
620            } else {
621                if (false)
622                {
623                    if (IsInfinity(A)) {
624                        return NaN;
625                    } else {
626                        return ( complex )0;
627                    }
628                }
629            }
630            complex ret;
631            if (B == 0) return INF ;
632            ret.real =  (double) (A.real / B);
633            ret.imag =  (double) (A.imag / B);
634            return ret;
635        }
636        /// <summary>
637        /// Equality comparison for complex numbers
638        /// </summary>
639        /// <param name="A">Left side</param>
640        /// <param name="B">Right side</param>
641        /// <returns>result</returns>
642        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
643        public static bool operator ==( complex A,  Int64 B) {
644            return (A.real == B && A.imag == 0.0);
645        }
646        /// <summary>
647        /// Unequality comparison for complex numbers
648        /// </summary>
649        /// <param name="A">Left side</param>
650        /// <param name="B">Right side</param>
651        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
652        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
653        public static bool operator !=( complex A,  Int64 B) {
654            return (A.imag != 0.0) || (A.real != B);
655        }
656        /// <summary>
657        /// Freater than comparison for complex numbers
658        /// </summary>
659        /// <param name="A">Left side</param>
660        /// <param name="B">Right side</param>
661        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
662        /// <remarks>Only the real parts are compared!</remarks>
663        public static bool operator > ( complex A,  Int64 B) {
664            return (A.real > B);
665        }
666        /// <summary>
667        /// Lower than comparison for complex numbers
668        /// </summary>
669        /// <param name="A">Left side</param>
670        /// <param name="B">Right side</param>
671        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
672        /// <remarks>Only the real parts are compared!</remarks>
673        public static bool operator <(  complex A,  Int64 B) {
674            return (A.real < B);
675        }
676        /// <summary>
677        /// Greater than or equal to comparison for complex numbers
678        /// </summary>
679        /// <param name="A">Left side</param>
680        /// <param name="B">Right side</param>
681        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
682        /// <remarks>Only the real parts are compared!</remarks>
683        public static bool operator >=( complex A,  Int64 B) {
684            return (A.real >= B);
685        }
686        /// <summary>
687        /// Lower than or equal to comparison for complex numbers
688        /// </summary>
689        /// <param name="A">Left side</param>
690        /// <param name="B">Right side</param>
691        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
692        /// <remarks>Only the real parts are compared!</remarks>
693        public static bool operator <=( complex A,  Int64 B) {
694            return (A.real <= B);
695        }
696       
697        /// <summary>
698        /// Add two complex numbers
699        /// </summary>
700        /// <param name="A">First summand</param>
701        /// <param name="B">Second summand</param>
702        /// <returns>Result</returns>
703        public static  complex operator +( complex A,  Int32 B) {
704            complex ret;
705            ret.real =  (double) (A.real + B);
706            ret.imag =  (double) A.imag;
707            return ret;
708        }
709        /// <summary>
710        /// Subtract two values
711        /// </summary>
712        /// <param name="A">Minuend</param>
713        /// <param name="B">Subtrahend</param>
714        /// <returns>result</returns>
715        public static  complex operator -( complex A,  Int32 B) {
716            complex ret;
717            ret.real =  (double) (A.real - B);
718            ret.imag =  (double) A.imag;
719            return ret;
720        }
721        /// <summary>
722        /// Multiply two values
723        /// </summary>
724        /// <param name="A">First factor</param>
725        /// <param name="B">Second factor</param>
726        /// <returns>result</returns>
727        public static  complex operator *( complex A,  Int32 B) {
728            complex ret;
729            ret.real =  (double) (A.real * B);
730            ret.imag =  (double) (A.imag * B);
731            return ret;
732        }
733        /// <summary>
734        /// Divide two numbers
735        /// </summary>
736        /// <param name="A">Divident</param>
737        /// <param name="B">Divisor</param>
738        /// <returns>result</returns>
739        public static  complex operator /( complex A,  Int32 B) {
740            if (IsNaN(A)) return NaN;
741           
742            if (A.real == 0 && A.imag == 0) {
743                if (B == 0) return NaN;
744                return ( complex )0;
745            } else {
746                if (false)
747                {
748                    if (IsInfinity(A)) {
749                        return NaN;
750                    } else {
751                        return ( complex )0;
752                    }
753                }
754            }
755            complex ret;
756            if (B == 0) return INF ;
757            ret.real =  (double) (A.real / B);
758            ret.imag =  (double) (A.imag / B);
759            return ret;
760        }
761        /// <summary>
762        /// Equality comparison for complex numbers
763        /// </summary>
764        /// <param name="A">Left side</param>
765        /// <param name="B">Right side</param>
766        /// <returns>result</returns>
767        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
768        public static bool operator ==( complex A,  Int32 B) {
769            return (A.real == B && A.imag == 0.0);
770        }
771        /// <summary>
772        /// Unequality comparison for complex numbers
773        /// </summary>
774        /// <param name="A">Left side</param>
775        /// <param name="B">Right side</param>
776        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
777        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
778        public static bool operator !=( complex A,  Int32 B) {
779            return (A.imag != 0.0) || (A.real != B);
780        }
781        /// <summary>
782        /// Freater than comparison for complex numbers
783        /// </summary>
784        /// <param name="A">Left side</param>
785        /// <param name="B">Right side</param>
786        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
787        /// <remarks>Only the real parts are compared!</remarks>
788        public static bool operator > ( complex A,  Int32 B) {
789            return (A.real > B);
790        }
791        /// <summary>
792        /// Lower than comparison for complex numbers
793        /// </summary>
794        /// <param name="A">Left side</param>
795        /// <param name="B">Right side</param>
796        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
797        /// <remarks>Only the real parts are compared!</remarks>
798        public static bool operator <(  complex A,  Int32 B) {
799            return (A.real < B);
800        }
801        /// <summary>
802        /// Greater than or equal to comparison for complex numbers
803        /// </summary>
804        /// <param name="A">Left side</param>
805        /// <param name="B">Right side</param>
806        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
807        /// <remarks>Only the real parts are compared!</remarks>
808        public static bool operator >=( complex A,  Int32 B) {
809            return (A.real >= B);
810        }
811        /// <summary>
812        /// Lower than or equal to comparison for complex numbers
813        /// </summary>
814        /// <param name="A">Left side</param>
815        /// <param name="B">Right side</param>
816        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
817        /// <remarks>Only the real parts are compared!</remarks>
818        public static bool operator <=( complex A,  Int32 B) {
819            return (A.real <= B);
820        }
821       
822        /// <summary>
823        /// Add two complex numbers
824        /// </summary>
825        /// <param name="A">First summand</param>
826        /// <param name="B">Second summand</param>
827        /// <returns>Result</returns>
828        public static  complex operator +( complex A,  float B) {
829            complex ret;
830            ret.real =  (double) (A.real + B);
831            ret.imag =  (double) A.imag;
832            return ret;
833        }
834        /// <summary>
835        /// Subtract two values
836        /// </summary>
837        /// <param name="A">Minuend</param>
838        /// <param name="B">Subtrahend</param>
839        /// <returns>result</returns>
840        public static  complex operator -( complex A,  float B) {
841            complex ret;
842            ret.real =  (double) (A.real - B);
843            ret.imag =  (double) A.imag;
844            return ret;
845        }
846        /// <summary>
847        /// Multiply two values
848        /// </summary>
849        /// <param name="A">First factor</param>
850        /// <param name="B">Second factor</param>
851        /// <returns>result</returns>
852        public static  complex operator *( complex A,  float B) {
853            complex ret;
854            ret.real =  (double) (A.real * B);
855            ret.imag =  (double) (A.imag * B);
856            return ret;
857        }
858        /// <summary>
859        /// Divide two numbers
860        /// </summary>
861        /// <param name="A">Divident</param>
862        /// <param name="B">Divisor</param>
863        /// <returns>result</returns>
864        public static  complex operator /( complex A,  float B) {
865            if (IsNaN(A)) return NaN;
866            if (float.IsNaN(B)) return NaN;
867            if (A.real == 0 && A.imag == 0) {
868                if (B == 0) return NaN;
869                return ( complex )0;
870            } else {
871                if (float.IsInfinity(B))
872                {
873                    if (IsInfinity(A)) {
874                        return NaN;
875                    } else {
876                        return ( complex )0;
877                    }
878                }
879            }
880            complex ret;
881            if (B == 0) return INF ;
882            ret.real =  (double) (A.real / B);
883            ret.imag =  (double) (A.imag / B);
884            return ret;
885        }
886        /// <summary>
887        /// Equality comparison for complex numbers
888        /// </summary>
889        /// <param name="A">Left side</param>
890        /// <param name="B">Right side</param>
891        /// <returns>result</returns>
892        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
893        public static bool operator ==( complex A,  float B) {
894            return (A.real == B && A.imag == 0.0);
895        }
896        /// <summary>
897        /// Unequality comparison for complex numbers
898        /// </summary>
899        /// <param name="A">Left side</param>
900        /// <param name="B">Right side</param>
901        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
902        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
903        public static bool operator !=( complex A,  float B) {
904            return (A.imag != 0.0) || (A.real != B);
905        }
906        /// <summary>
907        /// Freater than comparison for complex numbers
908        /// </summary>
909        /// <param name="A">Left side</param>
910        /// <param name="B">Right side</param>
911        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
912        /// <remarks>Only the real parts are compared!</remarks>
913        public static bool operator > ( complex A,  float B) {
914            return (A.real > B);
915        }
916        /// <summary>
917        /// Lower than comparison for complex numbers
918        /// </summary>
919        /// <param name="A">Left side</param>
920        /// <param name="B">Right side</param>
921        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
922        /// <remarks>Only the real parts are compared!</remarks>
923        public static bool operator <(  complex A,  float B) {
924            return (A.real < B);
925        }
926        /// <summary>
927        /// Greater than or equal to comparison for complex numbers
928        /// </summary>
929        /// <param name="A">Left side</param>
930        /// <param name="B">Right side</param>
931        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
932        /// <remarks>Only the real parts are compared!</remarks>
933        public static bool operator >=( complex A,  float B) {
934            return (A.real >= B);
935        }
936        /// <summary>
937        /// Lower than or equal to comparison for complex numbers
938        /// </summary>
939        /// <param name="A">Left side</param>
940        /// <param name="B">Right side</param>
941        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
942        /// <remarks>Only the real parts are compared!</remarks>
943        public static bool operator <=( complex A,  float B) {
944            return (A.real <= B);
945        }
946       
947        /// <summary>
948        /// Add two complex numbers
949        /// </summary>
950        /// <param name="A">First summand</param>
951        /// <param name="B">Second summand</param>
952        /// <returns>Result</returns>
953        public static  complex operator +( complex A,  byte B) {
954            complex ret;
955            ret.real =  (double) (A.real + B);
956            ret.imag =  (double) A.imag;
957            return ret;
958        }
959        /// <summary>
960        /// Subtract two values
961        /// </summary>
962        /// <param name="A">Minuend</param>
963        /// <param name="B">Subtrahend</param>
964        /// <returns>result</returns>
965        public static  complex operator -( complex A,  byte B) {
966            complex ret;
967            ret.real =  (double) (A.real - B);
968            ret.imag =  (double) A.imag;
969            return ret;
970        }
971        /// <summary>
972        /// Multiply two values
973        /// </summary>
974        /// <param name="A">First factor</param>
975        /// <param name="B">Second factor</param>
976        /// <returns>result</returns>
977        public static  complex operator *( complex A,  byte B) {
978            complex ret;
979            ret.real =  (double) (A.real * B);
980            ret.imag =  (double) (A.imag * B);
981            return ret;
982        }
983        /// <summary>
984        /// Divide two numbers
985        /// </summary>
986        /// <param name="A">Divident</param>
987        /// <param name="B">Divisor</param>
988        /// <returns>result</returns>
989        public static  complex operator /( complex A,  byte B) {
990            if (IsNaN(A)) return NaN;
991           
992            if (A.real == 0 && A.imag == 0) {
993                if (B == 0) return NaN;
994                return ( complex )0;
995            } else {
996                if (false)
997                {
998                    if (IsInfinity(A)) {
999                        return NaN;
1000                    } else {
1001                        return ( complex )0;
1002                    }
1003                }
1004            }
1005            complex ret;
1006            if (B == 0) return INF ;
1007            ret.real =  (double) (A.real / B);
1008            ret.imag =  (double) (A.imag / B);
1009            return ret;
1010        }
1011        /// <summary>
1012        /// Equality comparison for complex numbers
1013        /// </summary>
1014        /// <param name="A">Left side</param>
1015        /// <param name="B">Right side</param>
1016        /// <returns>result</returns>
1017        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1018        public static bool operator ==( complex A,  byte B) {
1019            return (A.real == B && A.imag == 0.0);
1020        }
1021        /// <summary>
1022        /// Unequality comparison for complex numbers
1023        /// </summary>
1024        /// <param name="A">Left side</param>
1025        /// <param name="B">Right side</param>
1026        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
1027        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1028        public static bool operator !=( complex A,  byte B) {
1029            return (A.imag != 0.0) || (A.real != B);
1030        }
1031        /// <summary>
1032        /// Freater than comparison for complex numbers
1033        /// </summary>
1034        /// <param name="A">Left side</param>
1035        /// <param name="B">Right side</param>
1036        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1037        /// <remarks>Only the real parts are compared!</remarks>
1038        public static bool operator > ( complex A,  byte B) {
1039            return (A.real > B);
1040        }
1041        /// <summary>
1042        /// Lower than comparison for complex numbers
1043        /// </summary>
1044        /// <param name="A">Left side</param>
1045        /// <param name="B">Right side</param>
1046        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1047        /// <remarks>Only the real parts are compared!</remarks>
1048        public static bool operator <(  complex A,  byte B) {
1049            return (A.real < B);
1050        }
1051        /// <summary>
1052        /// Greater than or equal to comparison for complex numbers
1053        /// </summary>
1054        /// <param name="A">Left side</param>
1055        /// <param name="B">Right side</param>
1056        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1057        /// <remarks>Only the real parts are compared!</remarks>
1058        public static bool operator >=( complex A,  byte B) {
1059            return (A.real >= B);
1060        }
1061        /// <summary>
1062        /// Lower than or equal to comparison for complex numbers
1063        /// </summary>
1064        /// <param name="A">Left side</param>
1065        /// <param name="B">Right side</param>
1066        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1067        /// <remarks>Only the real parts are compared!</remarks>
1068        public static bool operator <=( complex A,  byte B) {
1069            return (A.real <= B);
1070        }
1071
1072#endregion HYCALPER AUTO GENERATED CODE
1073
1074
1075       
1076        /// <summary>
1077        /// Add two complex values
1078        /// </summary>
1079        /// <param name="A">First summand</param>
1080        /// <param name="B">Second summand</param>
1081        /// <returns>Result</returns>
1082        public static  complex operator +( double A,  complex B) {
1083             complex ret;
1084            ret.real =  (double) (A + B.real);
1085            ret.imag =  (double) B.imag;
1086            return ret;
1087        }
1088        /// <summary>
1089        /// Subtract two values
1090        /// </summary>
1091        /// <param name="A">Minuend</param>
1092        /// <param name="B">Subtrahend</param>
1093        /// <returns>Result</returns>
1094        public static  complex operator -( double A,  complex B) {
1095             complex ret;
1096            ret.real =  (double) (A - B.real);
1097            ret.imag = - (double) B.imag;
1098            return ret;
1099        }
1100        /// <summary>
1101        /// Multiply two values
1102        /// </summary>
1103        /// <param name="A">First factor</param>
1104        /// <param name="B">Second factor</param>
1105        /// <returns>Result</returns>
1106        public static  complex operator *( double A,  complex B) {
1107             complex ret;
1108            ret.real =  (double) (A * B.real);
1109            ret.imag =  (double) (A * B.imag);
1110            return ret;
1111        }
1112        /// <summary>
1113        /// Divide two values
1114        /// </summary>
1115        /// <param name="A">Divident</param>
1116        /// <param name="B">Divisor</param>
1117        /// <returns>Result</returns>
1118        public static  complex operator /( double A,  complex B) {
1119             complex ret;
1120            if (A == 0) {
1121                if (IsInfinity(B)) return NaN;
1122            } else {
1123                if (IsInfinity(B)) return ( complex )0;
1124            }
1125            if (B.real == 0 && B.imag == 0) {
1126                return INF;
1127            }
1128            // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
1129            // did not show any advantage when using double precision floating point arithmetic.
1130             double tmp;
1131            if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
1132                tmp =  (double) (B.imag * (1/B.real));
1133                ret.imag =  (double) (B.real + B.imag*tmp);
1134                ret.real =  (double) A/ret.imag;
1135                ret.imag = -  (double) (A*tmp)/ret.imag;
1136            } else {
1137                tmp =  (double) (B.real * (1/B.imag));
1138                ret.imag =  (double) (B.imag + B.real*tmp);
1139                ret.real =  (double) (A*tmp)/ret.imag;
1140                ret.imag = -  (double) A/ret.imag;
1141            }
1142            return ret;
1143        }
1144        /// <summary>
1145        /// Equality comparison for complex numbers
1146        /// </summary>
1147        /// <param name="A">Left side</param>
1148        /// <param name="B">Right side</param>
1149        /// <returns>Result</returns>
1150        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1151        public static bool operator ==( double A,  complex B) {
1152            return (B.real == A && B.imag == 0.0);
1153        }
1154        /// <summary>
1155        /// Unequality comparison for complex numbers
1156        /// </summary>
1157        /// <param name="A">Left side</param>
1158        /// <param name="B">Right side</param>
1159        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
1160        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1161        public static bool operator !=( double A,  complex B) {
1162            return (B.imag != 0.0) || (B.real != A);
1163        }
1164        /// <summary>
1165        /// Greater than comparison for complex numbers
1166        /// </summary>
1167        /// <param name="A">Left side</param>
1168        /// <param name="B">Right side</param>
1169        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1170        /// <remarks>Only the real parts are compared!</remarks>
1171        public static bool operator > ( double A,  complex B) {
1172            return (A > B.real);
1173        }
1174        /// <summary>
1175        /// Lower than comparison for complex numbers
1176        /// </summary>
1177        /// <param name="A">Left side</param>
1178        /// <param name="B">Right side</param>
1179        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1180        /// <remarks>Only the real parts are compared!</remarks>
1181        public static bool operator < ( double A,  complex B) {
1182            return (A < B.real);
1183        }
1184        /// <summary>
1185        /// Greater than or equal to comparison for complex numbers
1186        /// </summary>
1187        /// <param name="A">Left side</param>
1188        /// <param name="B">Right side</param>
1189        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1190        /// <remarks>Only the real parts are compared!</remarks>
1191        public static bool operator >=( double A,  complex B) {
1192            return (A >= B.real);
1193        }
1194        /// <summary>
1195        /// Lower than or equal to comparison for complex numbers
1196        /// </summary>
1197        /// <param name="A">Left side</param>
1198        /// <param name="B">Right side</param>
1199        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1200        /// <remarks>Only the real parts are compared!</remarks>
1201        public static bool operator <=( double A,  complex B) {
1202            return (A <= B.real);
1203        }
1204
1205#region HYCALPER AUTO GENERATED CODE
1206
1207       
1208        /// <summary>
1209        /// Add two complex values
1210        /// </summary>
1211        /// <param name="A">First summand</param>
1212        /// <param name="B">Second summand</param>
1213        /// <returns>Result</returns>
1214        public static  complex operator +( Int64 A,  complex B) {
1215            complex ret;
1216            ret.real =  (double) (A + B.real);
1217            ret.imag =  (double) B.imag;
1218            return ret;
1219        }
1220        /// <summary>
1221        /// Subtract two values
1222        /// </summary>
1223        /// <param name="A">Minuend</param>
1224        /// <param name="B">Subtrahend</param>
1225        /// <returns>Result</returns>
1226        public static  complex operator -( Int64 A,  complex B) {
1227            complex ret;
1228            ret.real =  (double) (A - B.real);
1229            ret.imag = - (double) B.imag;
1230            return ret;
1231        }
1232        /// <summary>
1233        /// Multiply two values
1234        /// </summary>
1235        /// <param name="A">First factor</param>
1236        /// <param name="B">Second factor</param>
1237        /// <returns>Result</returns>
1238        public static  complex operator *( Int64 A,  complex B) {
1239            complex ret;
1240            ret.real =  (double) (A * B.real);
1241            ret.imag =  (double) (A * B.imag);
1242            return ret;
1243        }
1244        /// <summary>
1245        /// Divide two values
1246        /// </summary>
1247        /// <param name="A">Divident</param>
1248        /// <param name="B">Divisor</param>
1249        /// <returns>Result</returns>
1250        public static  complex operator /( Int64 A,  complex B) {
1251            complex ret;
1252            if (A == 0) {
1253                if (IsInfinity(B)) return NaN;
1254            } else {
1255                if (IsInfinity(B)) return ( complex )0;
1256            }
1257            if (B.real == 0 && B.imag == 0) {
1258                return INF;
1259            }
1260            // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
1261            // did not show any advantage when using double precision floating point arithmetic.
1262            double tmp;
1263            if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
1264                tmp =  (double) (B.imag * (1/B.real));
1265                ret.imag =  (double) (B.real + B.imag*tmp);
1266                ret.real =  (double) A/ret.imag;
1267                ret.imag = -  (double) (A*tmp)/ret.imag;
1268            } else {
1269                tmp =  (double) (B.real * (1/B.imag));
1270                ret.imag =  (double) (B.imag + B.real*tmp);
1271                ret.real =  (double) (A*tmp)/ret.imag;
1272                ret.imag = -  (double) A/ret.imag;
1273            }
1274            return ret;
1275        }
1276        /// <summary>
1277        /// Equality comparison for complex numbers
1278        /// </summary>
1279        /// <param name="A">Left side</param>
1280        /// <param name="B">Right side</param>
1281        /// <returns>Result</returns>
1282        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1283        public static bool operator ==( Int64 A,  complex B) {
1284            return (B.real == A && B.imag == 0.0);
1285        }
1286        /// <summary>
1287        /// Unequality comparison for complex numbers
1288        /// </summary>
1289        /// <param name="A">Left side</param>
1290        /// <param name="B">Right side</param>
1291        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
1292        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1293        public static bool operator !=( Int64 A,  complex B) {
1294            return (B.imag != 0.0) || (B.real != A);
1295        }
1296        /// <summary>
1297        /// Greater than comparison for complex numbers
1298        /// </summary>
1299        /// <param name="A">Left side</param>
1300        /// <param name="B">Right side</param>
1301        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1302        /// <remarks>Only the real parts are compared!</remarks>
1303        public static bool operator > ( Int64 A,  complex B) {
1304            return (A > B.real);
1305        }
1306        /// <summary>
1307        /// Lower than comparison for complex numbers
1308        /// </summary>
1309        /// <param name="A">Left side</param>
1310        /// <param name="B">Right side</param>
1311        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1312        /// <remarks>Only the real parts are compared!</remarks>
1313        public static bool operator < ( Int64 A,  complex B) {
1314            return (A < B.real);
1315        }
1316        /// <summary>
1317        /// Greater than or equal to comparison for complex numbers
1318        /// </summary>
1319        /// <param name="A">Left side</param>
1320        /// <param name="B">Right side</param>
1321        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1322        /// <remarks>Only the real parts are compared!</remarks>
1323        public static bool operator >=( Int64 A,  complex B) {
1324            return (A >= B.real);
1325        }
1326        /// <summary>
1327        /// Lower than or equal to comparison for complex numbers
1328        /// </summary>
1329        /// <param name="A">Left side</param>
1330        /// <param name="B">Right side</param>
1331        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1332        /// <remarks>Only the real parts are compared!</remarks>
1333        public static bool operator <=( Int64 A,  complex B) {
1334            return (A <= B.real);
1335        }
1336       
1337        /// <summary>
1338        /// Add two complex values
1339        /// </summary>
1340        /// <param name="A">First summand</param>
1341        /// <param name="B">Second summand</param>
1342        /// <returns>Result</returns>
1343        public static  complex operator +( Int32 A,  complex B) {
1344            complex ret;
1345            ret.real =  (double) (A + B.real);
1346            ret.imag =  (double) B.imag;
1347            return ret;
1348        }
1349        /// <summary>
1350        /// Subtract two values
1351        /// </summary>
1352        /// <param name="A">Minuend</param>
1353        /// <param name="B">Subtrahend</param>
1354        /// <returns>Result</returns>
1355        public static  complex operator -( Int32 A,  complex B) {
1356            complex ret;
1357            ret.real =  (double) (A - B.real);
1358            ret.imag = - (double) B.imag;
1359            return ret;
1360        }
1361        /// <summary>
1362        /// Multiply two values
1363        /// </summary>
1364        /// <param name="A">First factor</param>
1365        /// <param name="B">Second factor</param>
1366        /// <returns>Result</returns>
1367        public static  complex operator *( Int32 A,  complex B) {
1368            complex ret;
1369            ret.real =  (double) (A * B.real);
1370            ret.imag =  (double) (A * B.imag);
1371            return ret;
1372        }
1373        /// <summary>
1374        /// Divide two values
1375        /// </summary>
1376        /// <param name="A">Divident</param>
1377        /// <param name="B">Divisor</param>
1378        /// <returns>Result</returns>
1379        public static  complex operator /( Int32 A,  complex B) {
1380            complex ret;
1381            if (A == 0) {
1382                if (IsInfinity(B)) return NaN;
1383            } else {
1384                if (IsInfinity(B)) return ( complex )0;
1385            }
1386            if (B.real == 0 && B.imag == 0) {
1387                return INF;
1388            }
1389            // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
1390            // did not show any advantage when using double precision floating point arithmetic.
1391            double tmp;
1392            if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
1393                tmp =  (double) (B.imag * (1/B.real));
1394                ret.imag =  (double) (B.real + B.imag*tmp);
1395                ret.real =  (double) A/ret.imag;
1396                ret.imag = -  (double) (A*tmp)/ret.imag;
1397            } else {
1398                tmp =  (double) (B.real * (1/B.imag));
1399                ret.imag =  (double) (B.imag + B.real*tmp);
1400                ret.real =  (double) (A*tmp)/ret.imag;
1401                ret.imag = -  (double) A/ret.imag;
1402            }
1403            return ret;
1404        }
1405        /// <summary>
1406        /// Equality comparison for complex numbers
1407        /// </summary>
1408        /// <param name="A">Left side</param>
1409        /// <param name="B">Right side</param>
1410        /// <returns>Result</returns>
1411        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1412        public static bool operator ==( Int32 A,  complex B) {
1413            return (B.real == A && B.imag == 0.0);
1414        }
1415        /// <summary>
1416        /// Unequality comparison for complex numbers
1417        /// </summary>
1418        /// <param name="A">Left side</param>
1419        /// <param name="B">Right side</param>
1420        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
1421        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1422        public static bool operator !=( Int32 A,  complex B) {
1423            return (B.imag != 0.0) || (B.real != A);
1424        }
1425        /// <summary>
1426        /// Greater than comparison for complex numbers
1427        /// </summary>
1428        /// <param name="A">Left side</param>
1429        /// <param name="B">Right side</param>
1430        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1431        /// <remarks>Only the real parts are compared!</remarks>
1432        public static bool operator > ( Int32 A,  complex B) {
1433            return (A > B.real);
1434        }
1435        /// <summary>
1436        /// Lower than comparison for complex numbers
1437        /// </summary>
1438        /// <param name="A">Left side</param>
1439        /// <param name="B">Right side</param>
1440        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1441        /// <remarks>Only the real parts are compared!</remarks>
1442        public static bool operator < ( Int32 A,  complex B) {
1443            return (A < B.real);
1444        }
1445        /// <summary>
1446        /// Greater than or equal to comparison for complex numbers
1447        /// </summary>
1448        /// <param name="A">Left side</param>
1449        /// <param name="B">Right side</param>
1450        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1451        /// <remarks>Only the real parts are compared!</remarks>
1452        public static bool operator >=( Int32 A,  complex B) {
1453            return (A >= B.real);
1454        }
1455        /// <summary>
1456        /// Lower than or equal to comparison for complex numbers
1457        /// </summary>
1458        /// <param name="A">Left side</param>
1459        /// <param name="B">Right side</param>
1460        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1461        /// <remarks>Only the real parts are compared!</remarks>
1462        public static bool operator <=( Int32 A,  complex B) {
1463            return (A <= B.real);
1464        }
1465       
1466        /// <summary>
1467        /// Add two complex values
1468        /// </summary>
1469        /// <param name="A">First summand</param>
1470        /// <param name="B">Second summand</param>
1471        /// <returns>Result</returns>
1472        public static  complex operator +( float A,  complex B) {
1473            complex ret;
1474            ret.real =  (double) (A + B.real);
1475            ret.imag =  (double) B.imag;
1476            return ret;
1477        }
1478        /// <summary>
1479        /// Subtract two values
1480        /// </summary>
1481        /// <param name="A">Minuend</param>
1482        /// <param name="B">Subtrahend</param>
1483        /// <returns>Result</returns>
1484        public static  complex operator -( float A,  complex B) {
1485            complex ret;
1486            ret.real =  (double) (A - B.real);
1487            ret.imag = - (double) B.imag;
1488            return ret;
1489        }
1490        /// <summary>
1491        /// Multiply two values
1492        /// </summary>
1493        /// <param name="A">First factor</param>
1494        /// <param name="B">Second factor</param>
1495        /// <returns>Result</returns>
1496        public static  complex operator *( float A,  complex B) {
1497            complex ret;
1498            ret.real =  (double) (A * B.real);
1499            ret.imag =  (double) (A * B.imag);
1500            return ret;
1501        }
1502        /// <summary>
1503        /// Divide two values
1504        /// </summary>
1505        /// <param name="A">Divident</param>
1506        /// <param name="B">Divisor</param>
1507        /// <returns>Result</returns>
1508        public static  complex operator /( float A,  complex B) {
1509            complex ret;
1510            if (A == 0) {
1511                if (IsInfinity(B)) return NaN;
1512            } else {
1513                if (IsInfinity(B)) return ( complex )0;
1514            }
1515            if (B.real == 0 && B.imag == 0) {
1516                return INF;
1517            }
1518            // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
1519            // did not show any advantage when using double precision floating point arithmetic.
1520            double tmp;
1521            if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
1522                tmp =  (double) (B.imag * (1/B.real));
1523                ret.imag =  (double) (B.real + B.imag*tmp);
1524                ret.real =  (double) A/ret.imag;
1525                ret.imag = -  (double) (A*tmp)/ret.imag;
1526            } else {
1527                tmp =  (double) (B.real * (1/B.imag));
1528                ret.imag =  (double) (B.imag + B.real*tmp);
1529                ret.real =  (double) (A*tmp)/ret.imag;
1530                ret.imag = -  (double) A/ret.imag;
1531            }
1532            return ret;
1533        }
1534        /// <summary>
1535        /// Equality comparison for complex numbers
1536        /// </summary>
1537        /// <param name="A">Left side</param>
1538        /// <param name="B">Right side</param>
1539        /// <returns>Result</returns>
1540        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1541        public static bool operator ==( float A,  complex B) {
1542            return (B.real == A && B.imag == 0.0);
1543        }
1544        /// <summary>
1545        /// Unequality comparison for complex numbers
1546        /// </summary>
1547        /// <param name="A">Left side</param>
1548        /// <param name="B">Right side</param>
1549        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
1550        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1551        public static bool operator !=( float A,  complex B) {
1552            return (B.imag != 0.0) || (B.real != A);
1553        }
1554        /// <summary>
1555        /// Greater than comparison for complex numbers
1556        /// </summary>
1557        /// <param name="A">Left side</param>
1558        /// <param name="B">Right side</param>
1559        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1560        /// <remarks>Only the real parts are compared!</remarks>
1561        public static bool operator > ( float A,  complex B) {
1562            return (A > B.real);
1563        }
1564        /// <summary>
1565        /// Lower than comparison for complex numbers
1566        /// </summary>
1567        /// <param name="A">Left side</param>
1568        /// <param name="B">Right side</param>
1569        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1570        /// <remarks>Only the real parts are compared!</remarks>
1571        public static bool operator < ( float A,  complex B) {
1572            return (A < B.real);
1573        }
1574        /// <summary>
1575        /// Greater than or equal to comparison for complex numbers
1576        /// </summary>
1577        /// <param name="A">Left side</param>
1578        /// <param name="B">Right side</param>
1579        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1580        /// <remarks>Only the real parts are compared!</remarks>
1581        public static bool operator >=( float A,  complex B) {
1582            return (A >= B.real);
1583        }
1584        /// <summary>
1585        /// Lower than or equal to comparison for complex numbers
1586        /// </summary>
1587        /// <param name="A">Left side</param>
1588        /// <param name="B">Right side</param>
1589        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1590        /// <remarks>Only the real parts are compared!</remarks>
1591        public static bool operator <=( float A,  complex B) {
1592            return (A <= B.real);
1593        }
1594       
1595        /// <summary>
1596        /// Add two complex values
1597        /// </summary>
1598        /// <param name="A">First summand</param>
1599        /// <param name="B">Second summand</param>
1600        /// <returns>Result</returns>
1601        public static  complex operator +( byte A,  complex B) {
1602            complex ret;
1603            ret.real =  (double) (A + B.real);
1604            ret.imag =  (double) B.imag;
1605            return ret;
1606        }
1607        /// <summary>
1608        /// Subtract two values
1609        /// </summary>
1610        /// <param name="A">Minuend</param>
1611        /// <param name="B">Subtrahend</param>
1612        /// <returns>Result</returns>
1613        public static  complex operator -( byte A,  complex B) {
1614            complex ret;
1615            ret.real =  (double) (A - B.real);
1616            ret.imag = - (double) B.imag;
1617            return ret;
1618        }
1619        /// <summary>
1620        /// Multiply two values
1621        /// </summary>
1622        /// <param name="A">First factor</param>
1623        /// <param name="B">Second factor</param>
1624        /// <returns>Result</returns>
1625        public static  complex operator *( byte A,  complex B) {
1626            complex ret;
1627            ret.real =  (double) (A * B.real);
1628            ret.imag =  (double) (A * B.imag);
1629            return ret;
1630        }
1631        /// <summary>
1632        /// Divide two values
1633        /// </summary>
1634        /// <param name="A">Divident</param>
1635        /// <param name="B">Divisor</param>
1636        /// <returns>Result</returns>
1637        public static  complex operator /( byte A,  complex B) {
1638            complex ret;
1639            if (A == 0) {
1640                if (IsInfinity(B)) return NaN;
1641            } else {
1642                if (IsInfinity(B)) return ( complex )0;
1643            }
1644            if (B.real == 0 && B.imag == 0) {
1645                return INF;
1646            }
1647            // this algorithm is taken from [1]. The one described in [2] was not taken. Tests
1648            // did not show any advantage when using double precision floating point arithmetic.
1649            double tmp;
1650            if (Math.Abs(B.real) >= Math.Abs(B.imag)) {
1651                tmp =  (double) (B.imag * (1/B.real));
1652                ret.imag =  (double) (B.real + B.imag*tmp);
1653                ret.real =  (double) A/ret.imag;
1654                ret.imag = -  (double) (A*tmp)/ret.imag;
1655            } else {
1656                tmp =  (double) (B.real * (1/B.imag));
1657                ret.imag =  (double) (B.imag + B.real*tmp);
1658                ret.real =  (double) (A*tmp)/ret.imag;
1659                ret.imag = -  (double) A/ret.imag;
1660            }
1661            return ret;
1662        }
1663        /// <summary>
1664        /// Equality comparison for complex numbers
1665        /// </summary>
1666        /// <param name="A">Left side</param>
1667        /// <param name="B">Right side</param>
1668        /// <returns>Result</returns>
1669        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1670        public static bool operator ==( byte A,  complex B) {
1671            return (B.real == A && B.imag == 0.0);
1672        }
1673        /// <summary>
1674        /// Unequality comparison for complex numbers
1675        /// </summary>
1676        /// <param name="A">Left side</param>
1677        /// <param name="B">Right side</param>
1678        /// <returns>true if real and imaginary parts of A and B are not equal, false otherwise</returns>
1679        /// <remarks>Real inputs are converted to a complex number and the result is compared to the complex input.</remarks>
1680        public static bool operator !=( byte A,  complex B) {
1681            return (B.imag != 0.0) || (B.real != A);
1682        }
1683        /// <summary>
1684        /// Greater than comparison for complex numbers
1685        /// </summary>
1686        /// <param name="A">Left side</param>
1687        /// <param name="B">Right side</param>
1688        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1689        /// <remarks>Only the real parts are compared!</remarks>
1690        public static bool operator > ( byte A,  complex B) {
1691            return (A > B.real);
1692        }
1693        /// <summary>
1694        /// Lower than comparison for complex numbers
1695        /// </summary>
1696        /// <param name="A">Left side</param>
1697        /// <param name="B">Right side</param>
1698        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1699        /// <remarks>Only the real parts are compared!</remarks>
1700        public static bool operator < ( byte A,  complex B) {
1701            return (A < B.real);
1702        }
1703        /// <summary>
1704        /// Greater than or equal to comparison for complex numbers
1705        /// </summary>
1706        /// <param name="A">Left side</param>
1707        /// <param name="B">Right side</param>
1708        /// <returns>true if real part of A is greater than real part of B, false otherwise</returns>
1709        /// <remarks>Only the real parts are compared!</remarks>
1710        public static bool operator >=( byte A,  complex B) {
1711            return (A >= B.real);
1712        }
1713        /// <summary>
1714        /// Lower than or equal to comparison for complex numbers
1715        /// </summary>
1716        /// <param name="A">Left side</param>
1717        /// <param name="B">Right side</param>
1718        /// <returns>true if real part of A is lower then real part of B, false otherwise</returns>
1719        /// <remarks>Only the real parts are compared!</remarks>
1720        public static bool operator <=( byte A,  complex B) {
1721            return (A <= B.real);
1722        }
1723
1724#endregion HYCALPER AUTO GENERATED CODE
1725
1726        #region unary minus
1727        /// <summary>
1728        /// Unary minus operator
1729        /// </summary>
1730        /// <param name="A">Complex input</param>
1731        /// <returns>Complex number similar to A, having real and imag part negated</returns>
1732        public static complex operator -( complex A) {
1733            complex ret = new complex();
1734            ret.imag = -A.imag;
1735            ret.real = -A.real;
1736            return ret;
1737        }
1738        #endregion
1739
1740        #region CAST_OPERATORS
1741        /// <summary>
1742        /// Cast value to complex number
1743        /// </summary>
1744        /// <param name="a">Value to cast</param>
1745        /// <returns>Complex number with the real part having the same value as a and the imaginary part is 0.</returns>
1746        public static implicit operator complex(double a) {
1747            return new complex(a, 0.0);
1748        }
1749        /// <summary>
1750        /// Cast value to complex number
1751        /// </summary>
1752        /// <param name="a">Value to cast</param>
1753        /// <returns>Complex number with the real part having the same value as the a and the imaginary part is 0.</returns>
1754        public static implicit operator complex(float a) {
1755            return new complex(a, 0.0);
1756        }
1757        /// <summary>
1758        /// Cast value to complex number
1759        /// </summary>
1760        /// <param name="a">Value to cast</param>
1761        /// <returns>Complex number being a copy of the real and imaginary parts of a.</returns>
1762        public static implicit operator complex(fcomplex a) {
1763            return new complex(a.real, a.imag);
1764        }
1765        /// <summary>
1766        /// Cast value to complex number
1767        /// </summary>
1768        /// <param name="a">Value to cast</param>
1769        /// <returns>Complex number with the real part having the same value as a and the imaginary part is 0.</returns>
1770        public static implicit operator complex(byte a) {
1771            return new complex(a, 0.0);
1772        }
1773        /// <summary>
1774        /// Cast value to complex number
1775        /// </summary>
1776        /// <param name="a">Value to cast</param>
1777        /// <returns>Complex number with the real part having the same value as a and the imaginary part is 0.</returns>
1778        public static implicit operator complex(Int32 a) {
1779            return new complex(a, 0.0);
1780        }
1781        /// <summary>
1782        /// Cast value to complex number
1783        /// </summary>
1784        /// <param name="a">Value to cast</param>
1785        /// <returns>Complex number with the real part having the same value as a and the imaginary part is 0.</returns>
1786        public static implicit operator complex(Int64 a) {
1787            return new complex(a, 0.0);
1788        }
1789
1790        /// <summary>
1791        /// Cast value from complex number
1792        /// </summary>
1793        /// <param name="a">Complex value to cast</param>
1794        /// <returns>Double number with the real part of a </returns>
1795        public static explicit operator double(complex a) {
1796            return a.real;
1797        }
1798        /// <summary>
1799        /// Cast value from complex number
1800        /// </summary>
1801        /// <param name="a">Complex value to cast</param>
1802        /// <returns>number with the real part of a </returns>
1803        /// <remarks>the return value is the result of a cast from double to float.</remarks>
1804        public static explicit operator float(complex a) {
1805            return (float)a.real;
1806        }
1807        /// <summary>
1808        /// Cast value from complex number
1809        /// </summary>
1810        /// <param name="a">Complex value to cast</param>
1811        /// <returns>float complex number with the real and imaginary parts being a copy of a </returns>
1812        /// <remarks>The real and imaginary parts are the result of a cast to float.</remarks>
1813        public static explicit operator fcomplex(complex a) {
1814            return new fcomplex((float)a.real, (float)a.imag);
1815        }
1816        /// <summary>
1817        /// Cast value from complex number
1818        /// </summary>
1819        /// <param name="a">Complex value to cast</param>
1820        /// <returns>Number with the real part of a </returns>
1821        /// <remarks>The return value is the result of a cast to byte.</remarks>
1822        public static explicit operator byte(complex a) {
1823            return (byte) a.real;
1824        }
1825        /// <summary>
1826        /// Cast value from complex number
1827        /// </summary>
1828        /// <param name="a">Complex value to cast</param>
1829        /// <returns>Number with the real part of a </returns>
1830        /// <remarks>The return value is the result of a cast to Int32.</remarks>
1831        public static explicit operator Int32(complex a) {
1832            return (Int32) a.real;
1833        }
1834        /// <summary>
1835        /// Cast value from complex number
1836        /// </summary>
1837        /// <param name="a">Complex value to cast</param>
1838        /// <returns>number with the real part of a </returns>
1839        /// <remarks>the return value is the result of a cast to Int64.</remarks>
1840        public static explicit operator Int64(complex a) {
1841            return (Int64) a.real;
1842        }
1843
1844        public static implicit operator complex(System.Numerics.Complex a) {
1845            return new complex(a.Real, a.Imaginary);
1846        }
1847#endregion CAST_OPERATORS
1848
1849        #region Functions Basic Math
1850        /// <summary>
1851        /// Absolute value of input
1852        /// </summary>
1853        /// <param name="input">Input value</param>
1854        /// <returns>The absolute value of the input</returns>
1855        public static double Abs(complex input) {
1856            return Math.Sqrt(input.real * input.real + input.imag * input.imag);
1857        }
1858        /// <summary>
1859        /// Phase angle of complex number
1860        /// </summary>
1861        /// <param name="input">Input value</param>
1862        /// <returns>The phase angle of the input</returns>
1863        /// <remarks>For the result the Atan2 function of the <see cref="Math"/> class is used.</remarks>
1864        public static double Angle(complex input) {
1865            return Math.Atan2(input.imag, input.real);
1866        }
1867        /// <summary>
1868        /// Arcus tangens of complex input
1869        /// </summary>
1870        /// <param name="input">Complex input</param>
1871        /// <returns>Arcus tangens of complex input</returns>
1872        /// <remarks></remarks>
1873        public static complex Atan(complex input) {
1874            complex ret = new complex(0, (float)0.5);
1875            return (ret * Log((complex.i + input) / (complex.i - input)));
1876        }
1877        /// <summary>
1878        /// Arcus cosinus of complex input
1879        /// </summary>
1880        /// <param name="input">Complex input</param>
1881        /// <returns>Arcus cosinus of input</returns>
1882        public static complex Acos(complex input) {
1883            complex ni = complex.i * -1.0;
1884            return complex.Log(complex.Sqrt(input * input - 1)
1885                + input) * ni;
1886        }
1887        /// <summary>
1888        /// Arcus cosinus of input
1889        /// </summary>
1890        /// <param name="input">Input value</param>
1891        /// <returns>Arcus cosinus of input</returns>
1892        public static complex Acos(double input) {
1893            if (Math.Abs(input) <= 1.0)
1894                return new complex(Math.Acos(input), 0.0);
1895            else {
1896                return Acos((complex)input);
1897            }
1898        }
1899        /// <summary>
1900        /// Arcus sinus of complex input
1901        /// </summary>
1902        /// <param name="input">Input value</param>
1903        /// <returns>Arcus sinus of input</returns>
1904        public static complex Asin(double input) {
1905            if (Math.Abs(input) <= 1.0)
1906                return new complex(Math.Asin(input), 0.0);
1907            else {
1908                return Asin((complex)input);
1909            }
1910        }
1911        /// <summary>
1912        /// Arcus sinus of input
1913        /// </summary>
1914        /// <param name="input">Input value</param>
1915        /// <returns>Arcus sinus of  input</returns>
1916        public static complex Asin(complex input) {
1917            complex ret = Acos(input);
1918            ret.real = Math.PI / 2 - ret.real;
1919            return ret;
1920        }
1921        /// <summary>
1922        /// Round towards positive infinity
1923        /// </summary>
1924        /// <param name="input">Input value</param>
1925        /// <returns>Result is the next integer value greater then input</returns>
1926        /// <remarks>ILMath.Ceiling operates in both: real and imaginary parts seperately</remarks>
1927        public static complex Ceiling (complex input){
1928            return new complex(
1929                    Math.Ceiling(input.real),
1930                    Math.Ceiling(input.imag)
1931            );
1932        }
1933        /// <summary>
1934        /// Round towards negative infinity
1935        /// </summary>
1936        /// <param name="input">Input value</param>
1937        /// <returns>Result is the next integer value lower then input</returns>
1938        /// <remarks>ILMath.Floor operates in both: real and imaginary parts seperately</remarks>
1939        public static complex Floor (complex input){
1940            return new complex(
1941                    Math.Floor(input.real),
1942                    Math.Floor(input.imag)
1943            );
1944        }
1945        /// <summary>
1946        /// Rounds towards nearest integer
1947        /// </summary>
1948        /// <param name="input">Input value</param>
1949        /// <returns>Result is the nearest integer value for input</returns>
1950        /// <remarks>ILMath.Round operates in both: real and imaginary parts deperately</remarks>
1951        public static complex Round (complex input){
1952            return new complex(
1953                    Math.Round(input.real),
1954                    Math.Round(input.imag)
1955            );
1956        }
1957        /// <summary>
1958        /// Signum function
1959        /// </summary>
1960        /// <param name="input">Complex input </param>
1961        /// <returns>Sesult as input / Abs(input)</returns>
1962        /// <remarks>Sign(input) with input being complex returns the projection onto
1963        /// the unit circle. If input is 0+0i the result will be 0+0i.</remarks>
1964        public static complex Sign (complex input){
1965            if (input.real == 0.0 && input.imag == 0.0)
1966                return new complex();
1967            else {
1968                double mag = Math.Sqrt(input.real * input.real + input.imag * input.imag);
1969                return new complex(
1970                    input.real / mag,
1971                    input.imag / mag);
1972            }
1973        }
1974        /// <summary>
1975        /// Truncate a floating point complex value
1976        /// </summary>
1977        /// <param name="input">Input value</param>
1978        /// <returns>Integer part of input</returns>
1979        /// <remarks>Operates on real and imaginary parts seperately.</remarks>
1980        public static complex Truncate (complex input){
1981            return new complex(
1982                    Math.Truncate(input.real),
1983                    Math.Truncate(input.imag)
1984            );
1985        }
1986        /// <summary>
1987        /// Cosinus
1988        /// </summary>
1989        /// <param name="input">Input value</param>
1990        /// <returns>Cosine of input</returns>
1991        /// <remarks><para>The cosine is computed by the trigonometric euler equation: </para>
1992        /// <para>0.5 * [exp(i input) + exp(-i input)]</para></remarks>
1993        public static complex Cos(complex input) {
1994            complex i = new complex(0, 1.0);
1995            complex mi = new complex(0, -1.0);
1996            return (Exp(i * input) + Exp(mi * input)) / 2.0;
1997        }
1998        /// <summary>
1999        /// Cosinus hyperbolicus
2000        /// </summary>
2001        /// <param name="input">Input</param>
2002        /// <returns>Cosine hyperbolicus of input</returns>
2003        /// <remarks><para>The cosine is computed by the trigonometric euler equation: </para>
2004        /// <para>(Exp(input) + Exp(-1.0 * input)) / 2.0</para></remarks>
2005        public static complex Cosh(complex input) {
2006            return (Exp(input) + Exp(-1.0 * input)) / 2.0;
2007        }
2008        /// <summary>
2009        /// Sinus
2010        /// </summary>
2011        /// <param name="input">Input value</param>
2012        /// <returns>Sinus of input</returns>
2013        /// <remarks><para>The sinus is computed by the trigonometric euler equation: </para>
2014        /// <para>(Exp(i * input) - Exp(-1.0 * i * input)) / (2.0 * i)</para></remarks>
2015        public static complex Sin(complex input) {
2016            complex i = new complex(0, 1.0);
2017            complex mi = new complex(0, -1.0);
2018            return (Exp(i * input) - Exp(mi * input)) / (2.0 * i);
2019        }
2020        /// <summary>
2021        /// Sinus hyperbolicus
2022        /// </summary>
2023        /// <param name="input">Input</param>
2024        /// <returns>Sinus hyperbolicus of input</returns>
2025        /// <remarks><para>The sinus hyperbolicus is computed by the trigonometric euler equation: </para>
2026        /// <para>(Exp(input) - Exp(-1.0 * input)) / 2.0</para></remarks>
2027        public static complex Sinh(complex input) {
2028            return (Exp(input) - Exp(-1.0 * input)) / 2.0;
2029        }
2030        /// <summary>
2031        /// Complex exponent
2032        /// </summary>
2033        /// <param name="exponent">Exponent</param>
2034        /// <returns>Result of exp(exponent)</returns>
2035        /// <remarks>For complex exponents, exp(exponent) is computed by
2036        /// <para>complex.FromPol(Math.Exp(exponent.real), exponent.imag)</para></remarks>
2037        public static complex Exp(complex exponent) {
2038            return complex.FromPol(Math.Exp(exponent.real), exponent.imag);
2039        }
2040        /// <summary>
2041        /// Complex power for real exponent
2042        /// </summary>
2043        /// <param name="input">Basis</param>
2044        /// <param name="exponent">Exponent</param>
2045        /// <returns>Result of input power exponent</returns>
2046        /// <remarks>The computation will be carried out by
2047        /// <para>exp(log(input) * exponent)</para></remarks>
2048        public static complex Pow(complex input, double exponent) {
2049            complex ret = input.Log();
2050            ret.imag *= exponent;
2051            ret.real *= exponent;
2052            return ret.Exp();
2053        }
2054        /// <summary>
2055        /// Complex power - real basis, real exponent
2056        /// </summary>
2057        /// <param name="basis">Basis</param>
2058        /// <param name="exponent">Exponent</param>
2059        /// <returns>Complex number.</returns>
2060        /// <remarks>The result will be a complex number. For negative basis
2061        /// the basis will be converted to a complex number and the power
2062        /// will be computed in the complex plane.</remarks>
2063        public static complex Pow(double basis, double exponent) {
2064            if (basis >= 0.0)
2065                return Math.Pow(basis, exponent);
2066            else
2067                return Pow((complex)basis, exponent);
2068        }
2069        /// <summary>
2070        /// Complex power - complex exponent
2071        /// </summary>
2072        /// <param name="basis">Basis</param>
2073        /// <param name="exponent">Exponent</param>
2074        /// <returns>Complex number exp(log(basis) * exponent).</returns>
2075        /// <remarks>The result will be the complex number exp(log(basis) * exponent). </remarks>
2076        public static complex Pow(complex basis, complex exponent) {
2077            complex ret = (basis.Log() * exponent);
2078            return ret.Exp();
2079        }
2080        /// <summary>
2081        /// Square root
2082        /// </summary>
2083        /// <param name="input">Input value</param>
2084        /// <returns>The square root of input</returns>
2085        /// <remarks>If input is smaller than 0.0, the computation will be done in the complex plane. </remarks>
2086        public static complex Sqrt(double input) {
2087            if (input > 0.0)
2088                return new complex(Math.Sqrt(input), 0.0);
2089            else
2090                return Sqrt(input);
2091        }
2092        /// <summary>
2093        /// Square root
2094        /// </summary>
2095        /// <param name="input">Input value</param>
2096        /// <returns>The square root of input</returns>
2097        /// <remarks>Numerical recipes in C: Appendix C </remarks>
2098        public static complex Sqrt(complex input) {
2099            // Reference : numerical recipes in C: Appendix C
2100            complex ret = new complex();
2101            double x, y, w, r;
2102            if (input.real == 0.0 && input.imag == 0.0)
2103                return ret;
2104            else {
2105                x = (double)Math.Abs(input.real);
2106                y = (double)Math.Abs(input.imag);
2107                if (x >= y) {
2108                    r = y / x;
2109                    w = Math.Sqrt(x) * Math.Sqrt(0.5 * (1.0 + Math.Sqrt(1.0 + r * r)));
2110                } else {
2111                    r = x / y;
2112                    w = Math.Sqrt(y) * Math.Sqrt(0.5 * (r + Math.Sqrt(1.0 + r * r)));
2113                }
2114                if (input.real >= 0.0) {
2115                    ret.real = w;
2116                    ret.imag = input.imag / (2.0 * w);
2117                } else {
2118                    ret.imag = (input.imag >= 0) ? w : -w;
2119                    ret.real = input.imag / (2.0 * ret.imag);
2120                }
2121                return ret;
2122            }
2123        }
2124        /// <summary>
2125        /// Tangens
2126        /// </summary>
2127        /// <param name="input">Input value</param>
2128        /// <returns>Tangens of input</returns>
2129        /// <remarks>The tangens is
2130        /// <para>sin(input) / cos(input)</para>
2131        /// if cos(input) == 0.0+0.0i, INF will be returned.</remarks>
2132        public static complex Tan(complex input) {
2133            complex ci = Cos(input);
2134            if (ci.real == 0.0 && ci.imag == 0.0)
2135                return INF;
2136            return (Sin(input) / ci);
2137        }
2138        /// <summary>
2139        /// Tangens hyperbolicus
2140        /// </summary>
2141        /// <param name="input">Input value</param>
2142        /// <returns>Tangens hyperbolicus</returns>
2143        /// <remarks>The tangens hyperbolicus is
2144        /// <para>sinh(input) / cosh(input)</para>
2145        /// if cosh(input) == 0.0+0.0i, INF will be returned.</remarks>
2146        public static complex Tanh(complex input) {
2147            complex si = Cosh(input);
2148            if (si.real == 0.0 && si.imag == 0.0)
2149                return INF;
2150            return (Sinh(input) / si);
2151        }
2152        /// <summary>
2153        /// Complex logarithm
2154        /// </summary>
2155        /// <param name="input">Input value</param>
2156        /// <returns>Complex logarithm of input</returns>
2157        /// <remarks>The real part of the logarithm is computed by
2158        /// <para>log (abs (input))</para>
2159        /// <para>The imaginary part holds the phase of input.</para>
2160        /// </remarks>
2161        public static complex Log(complex input) {
2162            complex ret = new complex();
2163            ret.real = Math.Log(Math.Sqrt(input.real * input.real + input.imag * input.imag));
2164            ret.imag = Math.Atan2(input.imag, input.real);
2165            return ret;
2166        }
2167        /// <summary>
2168        /// Logarithm of real input
2169        /// </summary>
2170        /// <param name="input">Input value - may be negative</param>
2171        /// <returns>Complex logarithm</returns>
2172        public static complex Log(double input) {
2173            return Log (new complex(input,0.0));
2174        }
2175        /// <summary>
2176        /// Logarithm of base 10 of real input
2177        /// </summary>
2178        /// <param name="input">Input value - may be negative</param>
2179        /// <returns>Complex logarithm of base 10</returns>
2180        public static complex Log10(double input) {
2181            return Log(new complex(input,0.0)) * 0.43429448190325176;
2182        }
2183        /// <summary>
2184        /// Logarithm of base 2 of real input
2185        /// </summary>
2186        /// <param name="input">Input value - may be negative</param>
2187        /// <returns>Complex logarithm of base 2</returns>
2188        public static complex Log2(double input) {
2189            return Log(new complex(input,0.0)) * 1.4426950408889641;
2190        }
2191        /// <summary>
2192        /// Logarithm of base 10
2193        /// </summary>
2194        /// <param name="input">Input value</param>
2195        /// <returns>Logarithm of base 10</returns>
2196        /// <seealso cref="ILNumerics.complex.Log(complex)"/>
2197        public static complex Log10(complex input) {
2198            return Log(input) * 0.43429448190325176;
2199        }
2200        /// <summary>
2201        /// Logarithm of base 2
2202        /// </summary>
2203        /// <param name="input">Input value</param>
2204        /// <returns>Logarithm of base 2.</returns>
2205        /// <seealso cref="ILNumerics.complex.Log(complex)"/>
2206        public static complex Log2(complex input) {
2207            return Log(input) * 1.4426950408889634;
2208        }
2209        /// <summary>
2210        /// Convert polar notation into cartesian notation
2211        /// </summary>
2212        /// <param name="magnitude">Magnitude</param>
2213        /// <param name="angle">Phase</param>
2214        /// <returns>Complex value having magnitude and phase</returns>
2215        public static complex FromPol(double magnitude, double angle) {
2216            return new complex(
2217                magnitude * Math.Cos(angle),
2218                magnitude * Math.Sin(angle)
2219            );
2220        }
2221        /// <summary>
2222        /// Convert to string
2223        /// </summary>
2224        /// <returns>String displaying the comlex number (full precision)</returns>
2225        public override String ToString() {
2226            if (imag>=0)
2227                return String.Format("{0} + {1}i",real,imag);
2228            else
2229                return String.Format("{0} - {1}i",real,-imag);
2230        }
2231        private static string m_precSpecI = "";
2232        private static string m_precSpecR = "";
2233        private static int m_lastDigits = 0;
2234        /// <summary>
2235        /// Print formated output of this number, determine number of digits
2236        /// </summary>
2237        /// <param name="digits">Number of digits</param>
2238        /// <returns>Formated output</returns>
2239        public string ToString(int digits) {
2240            if (digits < 1) return "";
2241            if (digits != m_lastDigits) {
2242                m_lastDigits = digits;
2243                m_precSpecR = String.Format("{{0:f{0}}}",digits);
2244                m_precSpecI = String.Format("{{1:f{0}}}i",digits);
2245            }
2246            if (imag >= 0) {
2247                return String.Format(m_precSpecR+"+"+m_precSpecI,real,imag);
2248            } else {
2249                return String.Format(m_precSpecR+"-"+m_precSpecI,real,-imag);
2250            }
2251        }
2252        /// <summary>
2253        /// Magnitude of this complex instance
2254        /// </summary>
2255        /// <returns>Magnitude</returns>
2256        public double Abs() {
2257            return Math.Sqrt(real * real + imag * imag);
2258        }
2259        /// <summary>
2260        /// Phase of this complex instance
2261        /// </summary>
2262        /// <returns>Phase</returns>
2263        public double Angle() {
2264            return Math.Atan2(imag, real);
2265        }
2266        /// <summary>
2267        /// Arcus cosinus of this complex instance
2268        /// </summary>
2269        /// <returns>Arcus cosinus</returns>
2270        public complex Acos() {
2271            complex ret = new complex(0, -1);
2272            return complex.Log(complex.Sqrt(this * this - 1)
2273                + this) * ret;
2274        }
2275        /// <summary>
2276        /// Arcus sinus of this complex instance
2277        /// </summary>
2278        /// <returns>arcus sinus</returns>
2279        public complex Asin() {
2280            complex ret = Acos(this);
2281            ret.real = Math.PI / 2 - ret.real;
2282            return ret;
2283        }
2284        /// <summary>
2285        /// Exponential / power of base e
2286        /// </summary>
2287        /// <returns>Power of base e</returns>
2288        public complex Exp() {
2289            return complex.FromPol(Math.Exp(real), imag);
2290        }
2291        /// <summary>
2292        /// Complex power real exponent
2293        /// </summary>
2294        /// <param name="exponent">Exponent</param>
2295        /// <returns>New complex number with result</returns>
2296        /// <remarks>If this instance is a and the exponent is e than
2297        /// the result will be the complex number exp(log(a) * e). </remarks>
2298        public complex Pow(double exponent) {
2299            complex ret = Log();
2300            ret.imag *= exponent;
2301            ret.real *= exponent;
2302            return ret.Exp();
2303        }
2304        /// <summary>
2305        /// Complex power - complex exponent
2306        /// </summary>
2307        /// <param name="exponent">Exponent</param>
2308        /// <returns>Complex number exp(log(this) * exponent).</returns>
2309        /// <remarks>If this instance is a than
2310        /// the result will be the complex number exp(log(a) * exponent). </remarks>
2311        public complex Pow(complex exponent) {
2312            complex ret = (Log() * exponent);
2313            return ret.Exp();
2314        }
2315        /// <summary>
2316        /// Square root of this complex value
2317        /// </summary>
2318        /// <returns>Square root of this complex value</returns>
2319        public complex Sqrt() {
2320            // Reference : numerical recipes in C: Appendix C
2321            complex ret = new complex();
2322            double x, y, w, r;
2323            if (real == 0.0 && imag == 0.0)
2324                return ret;
2325            else {
2326                x = (double)Math.Abs(real);
2327                y = (double)Math.Abs(imag);
2328                if (x >= y) {
2329                    r = y / x;
2330                    w = Math.Sqrt(x) * Math.Sqrt(0.5 * (1.0 + Math.Sqrt(1.0 + r * r)));
2331                } else {
2332                    r = x / y;
2333                    w = Math.Sqrt(y) * Math.Sqrt(0.5 * (r + Math.Sqrt(1.0 + r * r)));
2334                }
2335                if (real >= 0.0) {
2336                    ret.real = w;
2337                    ret.imag = imag / (2.0 * w);
2338                } else {
2339                    ret.imag = (imag >= 0) ? w : -w;
2340                    ret.real = imag / ( 2.0 * ret.imag );
2341                }
2342                return ret;
2343            }
2344        }
2345        /// <summary>
2346        /// Logarithm of base e
2347        /// </summary>
2348        /// <returns>Logarithm of base e</returns>
2349        /// <remarks>The logarithm of a complex number A is defined as follows: <br />
2350        /// <list type="none"><item>real part: log(abs(A))</item>
2351        /// <item>imag part: Atan2(imag(A),real(A))</item></list>
2352        /// </remarks>
2353        public complex Log() {
2354            complex ret = new complex();
2355            ret.real = Math.Log(Math.Sqrt(real * real + imag * imag));
2356            ret.imag = Math.Atan2(imag, real);
2357            return ret;
2358        }
2359        /// <summary>
2360        /// Test if any of real or imaginary parts are NAN's
2361        /// </summary>
2362        /// <param name="input">Complex number to test</param>
2363        /// <returns>true if any of real or imag part is not a number</returns>
2364        public static bool IsNaN(complex input) {
2365            if (double.IsNaN(input.real) || double.IsNaN(input.imag))
2366                return true;
2367            else
2368                return false;
2369        }
2370        /// <summary>
2371        /// Test if any of real or imaginary parts are infinite
2372        /// </summary>
2373        /// <param name="input">Complex number to test</param>
2374        /// <returns>true if any of real or imag part is infinite</returns>
2375        public static bool IsInfinity(complex input) { 
2376            if (double.IsInfinity(input.real) || double.IsInfinity(input.imag))
2377                return true;
2378            else
2379                return false;
2380        }
2381        /// <summary>
2382        /// Test if any of real or imaginary parts are pos.nfinite
2383        /// </summary>
2384        /// <param name="input">Complex number to test</param>
2385        /// <returns>true if any of real or imag part is positive infinite</returns>
2386        public static bool IsPositiveInfinity(complex input) { 
2387            if (double.IsPositiveInfinity(input.real) || double.IsPositiveInfinity(input.imag))
2388                return true;
2389            else
2390                return false;
2391        }
2392        /// <summary>
2393        /// Test if any of real or imaginary parts are neg. infinite
2394        /// </summary>
2395        /// <param name="input">Complex number to test</param>
2396        /// <returns>true if any of real or imag part is negative infinite</returns>
2397        public static bool IsNegativeInfinity(complex input) { 
2398            if (double.IsNegativeInfinity(input.real) || double.IsNegativeInfinity(input.imag))
2399                return true;
2400            else
2401                return false;
2402        }
2403        /// <summary>
2404        /// Test if any of real or imaginary parts are finite
2405        /// </summary>
2406        /// <param name="input">Complex number to test</param>
2407        /// <returns>true if any of real and imag part is finite</returns>
2408        public static bool IsFinite (complex input) {
2409            if (ILMath.isfinite(input.real) && ILMath.isfinite(input.imag))
2410                return true;
2411            else
2412                return false;
2413        }
2414        /// <summary>
2415        /// Test if both of real or imaginary parts are 0
2416        /// </summary>
2417        /// <returns>true if real and imag part is 0</returns>
2418        public bool iszero() {
2419            if (real == 0.0 && imag == 0.0)
2420                return true;
2421            else
2422                return false;
2423        }
2424        #endregion Functions Basic Math
2425    }
2426   
2427}
Note: See TracBrowser for help on using the repository browser.