[9102] | 1 | ///
|
---|
| 2 | /// This file is part of ILNumerics Community Edition.
|
---|
| 3 | ///
|
---|
| 4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
| 5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
| 6 | ///
|
---|
| 7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
| 8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
| 9 | /// the Free Software Foundation.
|
---|
| 10 | ///
|
---|
| 11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
| 12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | /// GNU General Public License for more details.
|
---|
| 15 | ///
|
---|
| 16 | /// You should have received a copy of the GNU General Public License
|
---|
| 17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
| 18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | ///
|
---|
| 20 | /// In addition this software uses the following components and/or licenses:
|
---|
| 21 | ///
|
---|
| 22 | /// =================================================================================
|
---|
| 23 | /// The Open Toolkit Library License
|
---|
| 24 | ///
|
---|
| 25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
| 26 | ///
|
---|
| 27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
| 28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
| 29 | /// in the Software without restriction, including without limitation the rights to
|
---|
| 30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
| 32 | /// so, subject to the following conditions:
|
---|
| 33 | ///
|
---|
| 34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
| 35 | /// copies or substantial portions of the Software.
|
---|
| 36 | ///
|
---|
| 37 | /// =================================================================================
|
---|
| 38 | ///
|
---|
| 39 |
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Text;
|
---|
| 43 | using System.Threading;
|
---|
| 44 | using ILNumerics.Storage;
|
---|
| 45 | using ILNumerics.Misc;
|
---|
| 46 | using ILNumerics.Exceptions;
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 |
|
---|
| 50 | namespace ILNumerics {
|
---|
| 51 | public partial class ILMath {
|
---|
| 52 | |
---|
| 53 | /// <summary>
|
---|
| 54 | /// Select the k-th smallest element from an array along a specific dimension
|
---|
| 55 | /// </summary>
|
---|
| 56 | /// <param name="A">Input array</param>
|
---|
| 57 | /// <param name="k">The element to find. If k is smaller 1 or larger than the number of elements in list, the smallest/largest value will be returned.</param>
|
---|
| 58 | /// <param name="dim">[Optional] Dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 59 | /// <returns><para>Array having the specified dimension reduced to the length 1 with the value of the k-the smallest element along that dimension.</para>
|
---|
| 60 | /// <para>Exception: If the selected dimension is of size 0 it will remain 0 (an empty set).</para></returns>
|
---|
| 61 | public static ILRetArray<double> select(ILInArray<double> A, int k, int dim = -1) {
|
---|
| 62 | using (ILScope.Enter(A)) {
|
---|
| 63 | if (dim < 0)
|
---|
| 64 | dim = A.Size.WorkingDimension();
|
---|
| 65 |
|
---|
| 66 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 67 | return A.C;
|
---|
| 68 |
|
---|
| 69 | if (A.IsScalar) {
|
---|
| 70 | return new ILRetArray<double>(new double[] { A.GetValue(0) }, 1, 1);
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | if (A.S[dim] == 1) return A.C;
|
---|
| 74 |
|
---|
| 75 | int[] newDims = A.S.ToIntArray();
|
---|
| 76 | if (A.IsEmpty)
|
---|
| 77 | {
|
---|
| 78 | // If the array is empty, check whether it is empty along the chosen dimension
|
---|
| 79 |
|
---|
| 80 | if (A.S[dim] > 0)
|
---|
| 81 | // no there are potential elements in that dimension, hence we reduce it to 1
|
---|
| 82 | newDims[dim] = 1;
|
---|
| 83 | else
|
---|
| 84 | // yes, empty along chosen dimension so the result is empty, i.e. 0 elements in that dimension
|
---|
| 85 | newDims[dim] = 0;
|
---|
| 86 | return ILRetArray<double>.empty(new ILSize(newDims));
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | newDims[dim] = 1;
|
---|
| 90 |
|
---|
| 91 | // Check selected element and replace by useful value
|
---|
| 92 | if (k < 1)
|
---|
| 93 | k = 1;
|
---|
| 94 | if (k > A.S[dim])
|
---|
| 95 | k = A.S[dim];
|
---|
| 96 |
|
---|
| 97 | ILSize retDimension = new ILSize(newDims);
|
---|
| 98 |
|
---|
| 99 | double[] retArr = ILMemoryPool.Pool.New< double>(retDimension.NumberOfElements);
|
---|
| 100 |
|
---|
| 101 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 102 | int dimLen = A.Size[dim];
|
---|
| 103 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 104 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 105 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 106 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 107 | int numelA = A.S.NumberOfElements;
|
---|
| 108 | if (maxRuns == 1) {
|
---|
| 109 | int dummy;
|
---|
| 110 | retArr[0] = quickselect_worker(A.C.GetArrayForWrite(), 0, A.S[dim] - 1, k, out dummy);
|
---|
| 111 | } else {
|
---|
| 112 | #region may run parallel
|
---|
| 113 |
|
---|
| 114 | double[] aArray = A.GetArrayForRead();
|
---|
| 115 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 116 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 117 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 118 |
|
---|
| 119 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 120 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 121 | workItemLength = maxRuns / workItemCount;
|
---|
| 122 | } else {
|
---|
| 123 | workItemLength = maxRuns / 2;
|
---|
| 124 | workItemCount = 2;
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | } else {
|
---|
| 128 | workItemLength = maxRuns;
|
---|
| 129 | workItemCount = 1;
|
---|
| 130 | }
|
---|
| 131 | Action<object> action = (data) => {
|
---|
| 132 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 133 | int from = range.Item1, to = range.Item2;
|
---|
| 134 | for (int c = from; c < to; c++) {
|
---|
| 135 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 136 | int posOut = (c * incOut);
|
---|
| 137 | if (posOut > modOut)
|
---|
| 138 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 139 |
|
---|
| 140 | double[] tmp = ILMemoryPool.Pool.New< double>(dimLen);
|
---|
| 141 | int locPos = 0;
|
---|
| 142 | int end = pos + dimLen * inc;
|
---|
| 143 | for (int j = pos; j < end; j += inc)
|
---|
| 144 | tmp[locPos++] = aArray[j];
|
---|
| 145 | int dummy;
|
---|
| 146 | retArr[posOut] = quickselect_worker(tmp, 0, dimLen - 1, k, out dummy);
|
---|
| 147 | ILMemoryPool.Pool.Free(tmp);
|
---|
| 148 | }
|
---|
| 149 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 150 | };
|
---|
| 151 | for (; i < workItemCount - 1; i++) {
|
---|
| 152 | Interlocked.Increment(ref workerCount);
|
---|
| 153 |
|
---|
| 154 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 155 | }
|
---|
| 156 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 157 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 158 | #endregion
|
---|
| 159 | }
|
---|
| 160 | return new ILRetArray<double>(retArr, newDims);
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 | |
---|
| 164 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 165 | |
---|
| 166 | /// <summary>
|
---|
| 167 | /// Select the k-th smallest element from an array along a specific dimension
|
---|
| 168 | /// </summary>
|
---|
| 169 | /// <param name="A">Input array</param>
|
---|
| 170 | /// <param name="k">The element to find. If k is smaller 1 or larger than the number of elements in list, the smallest/largest value will be returned.</param>
|
---|
| 171 | /// <param name="dim">[Optional] Dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 172 | /// <returns><para>Array having the specified dimension reduced to the length 1 with the value of the k-the smallest element along that dimension.</para>
|
---|
| 173 | /// <para>Exception: If the selected dimension is of size 0 it will remain 0 (an empty set).</para></returns>
|
---|
| 174 | public static ILRetArray<Int64> select(ILInArray<Int64> A, int k, int dim = -1) {
|
---|
| 175 | using (ILScope.Enter(A)) {
|
---|
| 176 | if (dim < 0)
|
---|
| 177 | dim = A.Size.WorkingDimension();
|
---|
| 178 |
|
---|
| 179 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 180 | return A.C;
|
---|
| 181 |
|
---|
| 182 | if (A.IsScalar) {
|
---|
| 183 | return new ILRetArray<Int64>(new Int64[] { A.GetValue(0) }, 1, 1);
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | if (A.S[dim] == 1) return A.C;
|
---|
| 187 |
|
---|
| 188 | int[] newDims = A.S.ToIntArray();
|
---|
| 189 | if (A.IsEmpty)
|
---|
| 190 | {
|
---|
| 191 | // If the array is empty, check whether it is empty along the chosen dimension
|
---|
| 192 |
|
---|
| 193 | if (A.S[dim] > 0)
|
---|
| 194 | // no there are potential elements in that dimension, hence we reduce it to 1
|
---|
| 195 | newDims[dim] = 1;
|
---|
| 196 | else
|
---|
| 197 | // yes, empty along chosen dimension so the result is empty, i.e. 0 elements in that dimension
|
---|
| 198 | newDims[dim] = 0;
|
---|
| 199 | return ILRetArray<Int64>.empty(new ILSize(newDims));
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | newDims[dim] = 1;
|
---|
| 203 |
|
---|
| 204 | // Check selected element and replace by useful value
|
---|
| 205 | if (k < 1)
|
---|
| 206 | k = 1;
|
---|
| 207 | if (k > A.S[dim])
|
---|
| 208 | k = A.S[dim];
|
---|
| 209 |
|
---|
| 210 | ILSize retDimension = new ILSize(newDims);
|
---|
| 211 |
|
---|
| 212 | Int64[] retArr = ILMemoryPool.Pool.New< Int64>(retDimension.NumberOfElements);
|
---|
| 213 |
|
---|
| 214 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 215 | int dimLen = A.Size[dim];
|
---|
| 216 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 217 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 218 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 219 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 220 | int numelA = A.S.NumberOfElements;
|
---|
| 221 | if (maxRuns == 1) {
|
---|
| 222 | int dummy;
|
---|
| 223 | retArr[0] = quickselect_worker(A.C.GetArrayForWrite(), 0, A.S[dim] - 1, k, out dummy);
|
---|
| 224 | } else {
|
---|
| 225 | #region may run parallel
|
---|
| 226 |
|
---|
| 227 | Int64[] aArray = A.GetArrayForRead();
|
---|
| 228 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 229 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 230 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 231 |
|
---|
| 232 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 233 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 234 | workItemLength = maxRuns / workItemCount;
|
---|
| 235 | } else {
|
---|
| 236 | workItemLength = maxRuns / 2;
|
---|
| 237 | workItemCount = 2;
|
---|
| 238 | }
|
---|
| 239 |
|
---|
| 240 | } else {
|
---|
| 241 | workItemLength = maxRuns;
|
---|
| 242 | workItemCount = 1;
|
---|
| 243 | }
|
---|
| 244 | Action<object> action = (data) => {
|
---|
| 245 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 246 | int from = range.Item1, to = range.Item2;
|
---|
| 247 | for (int c = from; c < to; c++) {
|
---|
| 248 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 249 | int posOut = (c * incOut);
|
---|
| 250 | if (posOut > modOut)
|
---|
| 251 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 252 |
|
---|
| 253 | Int64[] tmp = ILMemoryPool.Pool.New< Int64>(dimLen);
|
---|
| 254 | int locPos = 0;
|
---|
| 255 | int end = pos + dimLen * inc;
|
---|
| 256 | for (int j = pos; j < end; j += inc)
|
---|
| 257 | tmp[locPos++] = aArray[j];
|
---|
| 258 | int dummy;
|
---|
| 259 | retArr[posOut] = quickselect_worker(tmp, 0, dimLen - 1, k, out dummy);
|
---|
| 260 | ILMemoryPool.Pool.Free(tmp);
|
---|
| 261 | }
|
---|
| 262 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 263 | };
|
---|
| 264 | for (; i < workItemCount - 1; i++) {
|
---|
| 265 | Interlocked.Increment(ref workerCount);
|
---|
| 266 |
|
---|
| 267 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 268 | }
|
---|
| 269 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 270 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 271 | #endregion
|
---|
| 272 | }
|
---|
| 273 | return new ILRetArray<Int64>(retArr, newDims);
|
---|
| 274 | }
|
---|
| 275 | }
|
---|
| 276 | /// <summary>
|
---|
| 277 | /// Select the k-th smallest element from an array along a specific dimension
|
---|
| 278 | /// </summary>
|
---|
| 279 | /// <param name="A">Input array</param>
|
---|
| 280 | /// <param name="k">The element to find. If k is smaller 1 or larger than the number of elements in list, the smallest/largest value will be returned.</param>
|
---|
| 281 | /// <param name="dim">[Optional] Dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 282 | /// <returns><para>Array having the specified dimension reduced to the length 1 with the value of the k-the smallest element along that dimension.</para>
|
---|
| 283 | /// <para>Exception: If the selected dimension is of size 0 it will remain 0 (an empty set).</para></returns>
|
---|
| 284 | public static ILRetArray<Int32> select(ILInArray<Int32> A, int k, int dim = -1) {
|
---|
| 285 | using (ILScope.Enter(A)) {
|
---|
| 286 | if (dim < 0)
|
---|
| 287 | dim = A.Size.WorkingDimension();
|
---|
| 288 |
|
---|
| 289 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 290 | return A.C;
|
---|
| 291 |
|
---|
| 292 | if (A.IsScalar) {
|
---|
| 293 | return new ILRetArray<Int32>(new Int32[] { A.GetValue(0) }, 1, 1);
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 | if (A.S[dim] == 1) return A.C;
|
---|
| 297 |
|
---|
| 298 | int[] newDims = A.S.ToIntArray();
|
---|
| 299 | if (A.IsEmpty)
|
---|
| 300 | {
|
---|
| 301 | // If the array is empty, check whether it is empty along the chosen dimension
|
---|
| 302 |
|
---|
| 303 | if (A.S[dim] > 0)
|
---|
| 304 | // no there are potential elements in that dimension, hence we reduce it to 1
|
---|
| 305 | newDims[dim] = 1;
|
---|
| 306 | else
|
---|
| 307 | // yes, empty along chosen dimension so the result is empty, i.e. 0 elements in that dimension
|
---|
| 308 | newDims[dim] = 0;
|
---|
| 309 | return ILRetArray<Int32>.empty(new ILSize(newDims));
|
---|
| 310 | }
|
---|
| 311 |
|
---|
| 312 | newDims[dim] = 1;
|
---|
| 313 |
|
---|
| 314 | // Check selected element and replace by useful value
|
---|
| 315 | if (k < 1)
|
---|
| 316 | k = 1;
|
---|
| 317 | if (k > A.S[dim])
|
---|
| 318 | k = A.S[dim];
|
---|
| 319 |
|
---|
| 320 | ILSize retDimension = new ILSize(newDims);
|
---|
| 321 |
|
---|
| 322 | Int32[] retArr = ILMemoryPool.Pool.New< Int32>(retDimension.NumberOfElements);
|
---|
| 323 |
|
---|
| 324 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 325 | int dimLen = A.Size[dim];
|
---|
| 326 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 327 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 328 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 329 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 330 | int numelA = A.S.NumberOfElements;
|
---|
| 331 | if (maxRuns == 1) {
|
---|
| 332 | int dummy;
|
---|
| 333 | retArr[0] = quickselect_worker(A.C.GetArrayForWrite(), 0, A.S[dim] - 1, k, out dummy);
|
---|
| 334 | } else {
|
---|
| 335 | #region may run parallel
|
---|
| 336 |
|
---|
| 337 | Int32[] aArray = A.GetArrayForRead();
|
---|
| 338 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 339 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 340 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 341 |
|
---|
| 342 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 343 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 344 | workItemLength = maxRuns / workItemCount;
|
---|
| 345 | } else {
|
---|
| 346 | workItemLength = maxRuns / 2;
|
---|
| 347 | workItemCount = 2;
|
---|
| 348 | }
|
---|
| 349 |
|
---|
| 350 | } else {
|
---|
| 351 | workItemLength = maxRuns;
|
---|
| 352 | workItemCount = 1;
|
---|
| 353 | }
|
---|
| 354 | Action<object> action = (data) => {
|
---|
| 355 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 356 | int from = range.Item1, to = range.Item2;
|
---|
| 357 | for (int c = from; c < to; c++) {
|
---|
| 358 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 359 | int posOut = (c * incOut);
|
---|
| 360 | if (posOut > modOut)
|
---|
| 361 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 362 |
|
---|
| 363 | Int32[] tmp = ILMemoryPool.Pool.New< Int32>(dimLen);
|
---|
| 364 | int locPos = 0;
|
---|
| 365 | int end = pos + dimLen * inc;
|
---|
| 366 | for (int j = pos; j < end; j += inc)
|
---|
| 367 | tmp[locPos++] = aArray[j];
|
---|
| 368 | int dummy;
|
---|
| 369 | retArr[posOut] = quickselect_worker(tmp, 0, dimLen - 1, k, out dummy);
|
---|
| 370 | ILMemoryPool.Pool.Free(tmp);
|
---|
| 371 | }
|
---|
| 372 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 373 | };
|
---|
| 374 | for (; i < workItemCount - 1; i++) {
|
---|
| 375 | Interlocked.Increment(ref workerCount);
|
---|
| 376 |
|
---|
| 377 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 378 | }
|
---|
| 379 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 380 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 381 | #endregion
|
---|
| 382 | }
|
---|
| 383 | return new ILRetArray<Int32>(retArr, newDims);
|
---|
| 384 | }
|
---|
| 385 | }
|
---|
| 386 | /// <summary>
|
---|
| 387 | /// Select the k-th smallest element from an array along a specific dimension
|
---|
| 388 | /// </summary>
|
---|
| 389 | /// <param name="A">Input array</param>
|
---|
| 390 | /// <param name="k">The element to find. If k is smaller 1 or larger than the number of elements in list, the smallest/largest value will be returned.</param>
|
---|
| 391 | /// <param name="dim">[Optional] Dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 392 | /// <returns><para>Array having the specified dimension reduced to the length 1 with the value of the k-the smallest element along that dimension.</para>
|
---|
| 393 | /// <para>Exception: If the selected dimension is of size 0 it will remain 0 (an empty set).</para></returns>
|
---|
| 394 | public static ILRetArray<byte> select(ILInArray<byte> A, int k, int dim = -1) {
|
---|
| 395 | using (ILScope.Enter(A)) {
|
---|
| 396 | if (dim < 0)
|
---|
| 397 | dim = A.Size.WorkingDimension();
|
---|
| 398 |
|
---|
| 399 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 400 | return A.C;
|
---|
| 401 |
|
---|
| 402 | if (A.IsScalar) {
|
---|
| 403 | return new ILRetArray<byte>(new byte[] { A.GetValue(0) }, 1, 1);
|
---|
| 404 | }
|
---|
| 405 |
|
---|
| 406 | if (A.S[dim] == 1) return A.C;
|
---|
| 407 |
|
---|
| 408 | int[] newDims = A.S.ToIntArray();
|
---|
| 409 | if (A.IsEmpty)
|
---|
| 410 | {
|
---|
| 411 | // If the array is empty, check whether it is empty along the chosen dimension
|
---|
| 412 |
|
---|
| 413 | if (A.S[dim] > 0)
|
---|
| 414 | // no there are potential elements in that dimension, hence we reduce it to 1
|
---|
| 415 | newDims[dim] = 1;
|
---|
| 416 | else
|
---|
| 417 | // yes, empty along chosen dimension so the result is empty, i.e. 0 elements in that dimension
|
---|
| 418 | newDims[dim] = 0;
|
---|
| 419 | return ILRetArray<byte>.empty(new ILSize(newDims));
|
---|
| 420 | }
|
---|
| 421 |
|
---|
| 422 | newDims[dim] = 1;
|
---|
| 423 |
|
---|
| 424 | // Check selected element and replace by useful value
|
---|
| 425 | if (k < 1)
|
---|
| 426 | k = 1;
|
---|
| 427 | if (k > A.S[dim])
|
---|
| 428 | k = A.S[dim];
|
---|
| 429 |
|
---|
| 430 | ILSize retDimension = new ILSize(newDims);
|
---|
| 431 |
|
---|
| 432 | byte[] retArr = ILMemoryPool.Pool.New< byte>(retDimension.NumberOfElements);
|
---|
| 433 |
|
---|
| 434 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 435 | int dimLen = A.Size[dim];
|
---|
| 436 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 437 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 438 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 439 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 440 | int numelA = A.S.NumberOfElements;
|
---|
| 441 | if (maxRuns == 1) {
|
---|
| 442 | int dummy;
|
---|
| 443 | retArr[0] = quickselect_worker(A.C.GetArrayForWrite(), 0, A.S[dim] - 1, k, out dummy);
|
---|
| 444 | } else {
|
---|
| 445 | #region may run parallel
|
---|
| 446 |
|
---|
| 447 | byte[] aArray = A.GetArrayForRead();
|
---|
| 448 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 449 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 450 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 451 |
|
---|
| 452 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 453 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 454 | workItemLength = maxRuns / workItemCount;
|
---|
| 455 | } else {
|
---|
| 456 | workItemLength = maxRuns / 2;
|
---|
| 457 | workItemCount = 2;
|
---|
| 458 | }
|
---|
| 459 |
|
---|
| 460 | } else {
|
---|
| 461 | workItemLength = maxRuns;
|
---|
| 462 | workItemCount = 1;
|
---|
| 463 | }
|
---|
| 464 | Action<object> action = (data) => {
|
---|
| 465 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 466 | int from = range.Item1, to = range.Item2;
|
---|
| 467 | for (int c = from; c < to; c++) {
|
---|
| 468 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 469 | int posOut = (c * incOut);
|
---|
| 470 | if (posOut > modOut)
|
---|
| 471 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 472 |
|
---|
| 473 | byte[] tmp = ILMemoryPool.Pool.New< byte>(dimLen);
|
---|
| 474 | int locPos = 0;
|
---|
| 475 | int end = pos + dimLen * inc;
|
---|
| 476 | for (int j = pos; j < end; j += inc)
|
---|
| 477 | tmp[locPos++] = aArray[j];
|
---|
| 478 | int dummy;
|
---|
| 479 | retArr[posOut] = quickselect_worker(tmp, 0, dimLen - 1, k, out dummy);
|
---|
| 480 | ILMemoryPool.Pool.Free(tmp);
|
---|
| 481 | }
|
---|
| 482 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 483 | };
|
---|
| 484 | for (; i < workItemCount - 1; i++) {
|
---|
| 485 | Interlocked.Increment(ref workerCount);
|
---|
| 486 |
|
---|
| 487 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 488 | }
|
---|
| 489 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 490 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 491 | #endregion
|
---|
| 492 | }
|
---|
| 493 | return new ILRetArray<byte>(retArr, newDims);
|
---|
| 494 | }
|
---|
| 495 | }
|
---|
| 496 | /// <summary>
|
---|
| 497 | /// Select the k-th smallest element from an array along a specific dimension
|
---|
| 498 | /// </summary>
|
---|
| 499 | /// <param name="A">Input array</param>
|
---|
| 500 | /// <param name="k">The element to find. If k is smaller 1 or larger than the number of elements in list, the smallest/largest value will be returned.</param>
|
---|
| 501 | /// <param name="dim">[Optional] Dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 502 | /// <returns><para>Array having the specified dimension reduced to the length 1 with the value of the k-the smallest element along that dimension.</para>
|
---|
| 503 | /// <para>Exception: If the selected dimension is of size 0 it will remain 0 (an empty set).</para></returns>
|
---|
| 504 | public static ILRetArray<fcomplex> select(ILInArray<fcomplex> A, int k, int dim = -1) {
|
---|
| 505 | using (ILScope.Enter(A)) {
|
---|
| 506 | if (dim < 0)
|
---|
| 507 | dim = A.Size.WorkingDimension();
|
---|
| 508 |
|
---|
| 509 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 510 | return A.C;
|
---|
| 511 |
|
---|
| 512 | if (A.IsScalar) {
|
---|
| 513 | return new ILRetArray<fcomplex>(new fcomplex[] { A.GetValue(0) }, 1, 1);
|
---|
| 514 | }
|
---|
| 515 |
|
---|
| 516 | if (A.S[dim] == 1) return A.C;
|
---|
| 517 |
|
---|
| 518 | int[] newDims = A.S.ToIntArray();
|
---|
| 519 | if (A.IsEmpty)
|
---|
| 520 | {
|
---|
| 521 | // If the array is empty, check whether it is empty along the chosen dimension
|
---|
| 522 |
|
---|
| 523 | if (A.S[dim] > 0)
|
---|
| 524 | // no there are potential elements in that dimension, hence we reduce it to 1
|
---|
| 525 | newDims[dim] = 1;
|
---|
| 526 | else
|
---|
| 527 | // yes, empty along chosen dimension so the result is empty, i.e. 0 elements in that dimension
|
---|
| 528 | newDims[dim] = 0;
|
---|
| 529 | return ILRetArray<fcomplex>.empty(new ILSize(newDims));
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | newDims[dim] = 1;
|
---|
| 533 |
|
---|
| 534 | // Check selected element and replace by useful value
|
---|
| 535 | if (k < 1)
|
---|
| 536 | k = 1;
|
---|
| 537 | if (k > A.S[dim])
|
---|
| 538 | k = A.S[dim];
|
---|
| 539 |
|
---|
| 540 | ILSize retDimension = new ILSize(newDims);
|
---|
| 541 |
|
---|
| 542 | fcomplex[] retArr = ILMemoryPool.Pool.New< fcomplex>(retDimension.NumberOfElements);
|
---|
| 543 |
|
---|
| 544 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 545 | int dimLen = A.Size[dim];
|
---|
| 546 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 547 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 548 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 549 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 550 | int numelA = A.S.NumberOfElements;
|
---|
| 551 | if (maxRuns == 1) {
|
---|
| 552 | int dummy;
|
---|
| 553 | retArr[0] = quickselect_worker(A.C.GetArrayForWrite(), 0, A.S[dim] - 1, k, out dummy);
|
---|
| 554 | } else {
|
---|
| 555 | #region may run parallel
|
---|
| 556 |
|
---|
| 557 | fcomplex[] aArray = A.GetArrayForRead();
|
---|
| 558 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 559 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 560 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 561 |
|
---|
| 562 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 563 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 564 | workItemLength = maxRuns / workItemCount;
|
---|
| 565 | } else {
|
---|
| 566 | workItemLength = maxRuns / 2;
|
---|
| 567 | workItemCount = 2;
|
---|
| 568 | }
|
---|
| 569 |
|
---|
| 570 | } else {
|
---|
| 571 | workItemLength = maxRuns;
|
---|
| 572 | workItemCount = 1;
|
---|
| 573 | }
|
---|
| 574 | Action<object> action = (data) => {
|
---|
| 575 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 576 | int from = range.Item1, to = range.Item2;
|
---|
| 577 | for (int c = from; c < to; c++) {
|
---|
| 578 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 579 | int posOut = (c * incOut);
|
---|
| 580 | if (posOut > modOut)
|
---|
| 581 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 582 |
|
---|
| 583 | fcomplex[] tmp = ILMemoryPool.Pool.New< fcomplex>(dimLen);
|
---|
| 584 | int locPos = 0;
|
---|
| 585 | int end = pos + dimLen * inc;
|
---|
| 586 | for (int j = pos; j < end; j += inc)
|
---|
| 587 | tmp[locPos++] = aArray[j];
|
---|
| 588 | int dummy;
|
---|
| 589 | retArr[posOut] = quickselect_worker(tmp, 0, dimLen - 1, k, out dummy);
|
---|
| 590 | ILMemoryPool.Pool.Free(tmp);
|
---|
| 591 | }
|
---|
| 592 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 593 | };
|
---|
| 594 | for (; i < workItemCount - 1; i++) {
|
---|
| 595 | Interlocked.Increment(ref workerCount);
|
---|
| 596 |
|
---|
| 597 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 598 | }
|
---|
| 599 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 600 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 601 | #endregion
|
---|
| 602 | }
|
---|
| 603 | return new ILRetArray<fcomplex>(retArr, newDims);
|
---|
| 604 | }
|
---|
| 605 | }
|
---|
| 606 | /// <summary>
|
---|
| 607 | /// Select the k-th smallest element from an array along a specific dimension
|
---|
| 608 | /// </summary>
|
---|
| 609 | /// <param name="A">Input array</param>
|
---|
| 610 | /// <param name="k">The element to find. If k is smaller 1 or larger than the number of elements in list, the smallest/largest value will be returned.</param>
|
---|
| 611 | /// <param name="dim">[Optional] Dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 612 | /// <returns><para>Array having the specified dimension reduced to the length 1 with the value of the k-the smallest element along that dimension.</para>
|
---|
| 613 | /// <para>Exception: If the selected dimension is of size 0 it will remain 0 (an empty set).</para></returns>
|
---|
| 614 | public static ILRetArray<float> select(ILInArray<float> A, int k, int dim = -1) {
|
---|
| 615 | using (ILScope.Enter(A)) {
|
---|
| 616 | if (dim < 0)
|
---|
| 617 | dim = A.Size.WorkingDimension();
|
---|
| 618 |
|
---|
| 619 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 620 | return A.C;
|
---|
| 621 |
|
---|
| 622 | if (A.IsScalar) {
|
---|
| 623 | return new ILRetArray<float>(new float[] { A.GetValue(0) }, 1, 1);
|
---|
| 624 | }
|
---|
| 625 |
|
---|
| 626 | if (A.S[dim] == 1) return A.C;
|
---|
| 627 |
|
---|
| 628 | int[] newDims = A.S.ToIntArray();
|
---|
| 629 | if (A.IsEmpty)
|
---|
| 630 | {
|
---|
| 631 | // If the array is empty, check whether it is empty along the chosen dimension
|
---|
| 632 |
|
---|
| 633 | if (A.S[dim] > 0)
|
---|
| 634 | // no there are potential elements in that dimension, hence we reduce it to 1
|
---|
| 635 | newDims[dim] = 1;
|
---|
| 636 | else
|
---|
| 637 | // yes, empty along chosen dimension so the result is empty, i.e. 0 elements in that dimension
|
---|
| 638 | newDims[dim] = 0;
|
---|
| 639 | return ILRetArray<float>.empty(new ILSize(newDims));
|
---|
| 640 | }
|
---|
| 641 |
|
---|
| 642 | newDims[dim] = 1;
|
---|
| 643 |
|
---|
| 644 | // Check selected element and replace by useful value
|
---|
| 645 | if (k < 1)
|
---|
| 646 | k = 1;
|
---|
| 647 | if (k > A.S[dim])
|
---|
| 648 | k = A.S[dim];
|
---|
| 649 |
|
---|
| 650 | ILSize retDimension = new ILSize(newDims);
|
---|
| 651 |
|
---|
| 652 | float[] retArr = ILMemoryPool.Pool.New< float>(retDimension.NumberOfElements);
|
---|
| 653 |
|
---|
| 654 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 655 | int dimLen = A.Size[dim];
|
---|
| 656 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 657 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 658 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 659 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 660 | int numelA = A.S.NumberOfElements;
|
---|
| 661 | if (maxRuns == 1) {
|
---|
| 662 | int dummy;
|
---|
| 663 | retArr[0] = quickselect_worker(A.C.GetArrayForWrite(), 0, A.S[dim] - 1, k, out dummy);
|
---|
| 664 | } else {
|
---|
| 665 | #region may run parallel
|
---|
| 666 |
|
---|
| 667 | float[] aArray = A.GetArrayForRead();
|
---|
| 668 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 669 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 670 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 671 |
|
---|
| 672 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 673 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 674 | workItemLength = maxRuns / workItemCount;
|
---|
| 675 | } else {
|
---|
| 676 | workItemLength = maxRuns / 2;
|
---|
| 677 | workItemCount = 2;
|
---|
| 678 | }
|
---|
| 679 |
|
---|
| 680 | } else {
|
---|
| 681 | workItemLength = maxRuns;
|
---|
| 682 | workItemCount = 1;
|
---|
| 683 | }
|
---|
| 684 | Action<object> action = (data) => {
|
---|
| 685 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 686 | int from = range.Item1, to = range.Item2;
|
---|
| 687 | for (int c = from; c < to; c++) {
|
---|
| 688 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 689 | int posOut = (c * incOut);
|
---|
| 690 | if (posOut > modOut)
|
---|
| 691 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 692 |
|
---|
| 693 | float[] tmp = ILMemoryPool.Pool.New< float>(dimLen);
|
---|
| 694 | int locPos = 0;
|
---|
| 695 | int end = pos + dimLen * inc;
|
---|
| 696 | for (int j = pos; j < end; j += inc)
|
---|
| 697 | tmp[locPos++] = aArray[j];
|
---|
| 698 | int dummy;
|
---|
| 699 | retArr[posOut] = quickselect_worker(tmp, 0, dimLen - 1, k, out dummy);
|
---|
| 700 | ILMemoryPool.Pool.Free(tmp);
|
---|
| 701 | }
|
---|
| 702 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 703 | };
|
---|
| 704 | for (; i < workItemCount - 1; i++) {
|
---|
| 705 | Interlocked.Increment(ref workerCount);
|
---|
| 706 |
|
---|
| 707 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 708 | }
|
---|
| 709 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 710 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 711 | #endregion
|
---|
| 712 | }
|
---|
| 713 | return new ILRetArray<float>(retArr, newDims);
|
---|
| 714 | }
|
---|
| 715 | }
|
---|
| 716 | /// <summary>
|
---|
| 717 | /// Select the k-th smallest element from an array along a specific dimension
|
---|
| 718 | /// </summary>
|
---|
| 719 | /// <param name="A">Input array</param>
|
---|
| 720 | /// <param name="k">The element to find. If k is smaller 1 or larger than the number of elements in list, the smallest/largest value will be returned.</param>
|
---|
| 721 | /// <param name="dim">[Optional] Dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 722 | /// <returns><para>Array having the specified dimension reduced to the length 1 with the value of the k-the smallest element along that dimension.</para>
|
---|
| 723 | /// <para>Exception: If the selected dimension is of size 0 it will remain 0 (an empty set).</para></returns>
|
---|
| 724 | public static ILRetArray<complex> select(ILInArray<complex> A, int k, int dim = -1) {
|
---|
| 725 | using (ILScope.Enter(A)) {
|
---|
| 726 | if (dim < 0)
|
---|
| 727 | dim = A.Size.WorkingDimension();
|
---|
| 728 |
|
---|
| 729 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 730 | return A.C;
|
---|
| 731 |
|
---|
| 732 | if (A.IsScalar) {
|
---|
| 733 | return new ILRetArray<complex>(new complex[] { A.GetValue(0) }, 1, 1);
|
---|
| 734 | }
|
---|
| 735 |
|
---|
| 736 | if (A.S[dim] == 1) return A.C;
|
---|
| 737 |
|
---|
| 738 | int[] newDims = A.S.ToIntArray();
|
---|
| 739 | if (A.IsEmpty)
|
---|
| 740 | {
|
---|
| 741 | // If the array is empty, check whether it is empty along the chosen dimension
|
---|
| 742 |
|
---|
| 743 | if (A.S[dim] > 0)
|
---|
| 744 | // no there are potential elements in that dimension, hence we reduce it to 1
|
---|
| 745 | newDims[dim] = 1;
|
---|
| 746 | else
|
---|
| 747 | // yes, empty along chosen dimension so the result is empty, i.e. 0 elements in that dimension
|
---|
| 748 | newDims[dim] = 0;
|
---|
| 749 | return ILRetArray<complex>.empty(new ILSize(newDims));
|
---|
| 750 | }
|
---|
| 751 |
|
---|
| 752 | newDims[dim] = 1;
|
---|
| 753 |
|
---|
| 754 | // Check selected element and replace by useful value
|
---|
| 755 | if (k < 1)
|
---|
| 756 | k = 1;
|
---|
| 757 | if (k > A.S[dim])
|
---|
| 758 | k = A.S[dim];
|
---|
| 759 |
|
---|
| 760 | ILSize retDimension = new ILSize(newDims);
|
---|
| 761 |
|
---|
| 762 | complex[] retArr = ILMemoryPool.Pool.New< complex>(retDimension.NumberOfElements);
|
---|
| 763 |
|
---|
| 764 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 765 | int dimLen = A.Size[dim];
|
---|
| 766 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 767 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 768 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 769 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 770 | int numelA = A.S.NumberOfElements;
|
---|
| 771 | if (maxRuns == 1) {
|
---|
| 772 | int dummy;
|
---|
| 773 | retArr[0] = quickselect_worker(A.C.GetArrayForWrite(), 0, A.S[dim] - 1, k, out dummy);
|
---|
| 774 | } else {
|
---|
| 775 | #region may run parallel
|
---|
| 776 |
|
---|
| 777 | complex[] aArray = A.GetArrayForRead();
|
---|
| 778 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 779 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 780 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 781 |
|
---|
| 782 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 783 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 784 | workItemLength = maxRuns / workItemCount;
|
---|
| 785 | } else {
|
---|
| 786 | workItemLength = maxRuns / 2;
|
---|
| 787 | workItemCount = 2;
|
---|
| 788 | }
|
---|
| 789 |
|
---|
| 790 | } else {
|
---|
| 791 | workItemLength = maxRuns;
|
---|
| 792 | workItemCount = 1;
|
---|
| 793 | }
|
---|
| 794 | Action<object> action = (data) => {
|
---|
| 795 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 796 | int from = range.Item1, to = range.Item2;
|
---|
| 797 | for (int c = from; c < to; c++) {
|
---|
| 798 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 799 | int posOut = (c * incOut);
|
---|
| 800 | if (posOut > modOut)
|
---|
| 801 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 802 |
|
---|
| 803 | complex[] tmp = ILMemoryPool.Pool.New< complex>(dimLen);
|
---|
| 804 | int locPos = 0;
|
---|
| 805 | int end = pos + dimLen * inc;
|
---|
| 806 | for (int j = pos; j < end; j += inc)
|
---|
| 807 | tmp[locPos++] = aArray[j];
|
---|
| 808 | int dummy;
|
---|
| 809 | retArr[posOut] = quickselect_worker(tmp, 0, dimLen - 1, k, out dummy);
|
---|
| 810 | ILMemoryPool.Pool.Free(tmp);
|
---|
| 811 | }
|
---|
| 812 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 813 | };
|
---|
| 814 | for (; i < workItemCount - 1; i++) {
|
---|
| 815 | Interlocked.Increment(ref workerCount);
|
---|
| 816 |
|
---|
| 817 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 818 | }
|
---|
| 819 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 820 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 821 | #endregion
|
---|
| 822 | }
|
---|
| 823 | return new ILRetArray<complex>(retArr, newDims);
|
---|
| 824 | }
|
---|
| 825 | }
|
---|
| 826 |
|
---|
| 827 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 828 |
|
---|
| 829 | #region private helpers
|
---|
| 830 | |
---|
| 831 | private static int partition(double[] list, int left, int right, int pivotIndex)
|
---|
| 832 | {
|
---|
| 833 |
|
---|
| 834 | double pivotValue = list[pivotIndex];
|
---|
| 835 |
|
---|
| 836 | double tmp = list[right];
|
---|
| 837 | list[right] = list[pivotIndex];
|
---|
| 838 | list[pivotIndex] = tmp; // Move pivot to end
|
---|
| 839 | int storeIndex = left;
|
---|
| 840 | for (int i = left; i <= right; i++)
|
---|
| 841 | {
|
---|
| 842 | if (list[i] < pivotValue)
|
---|
| 843 | {
|
---|
| 844 | tmp = list[storeIndex];
|
---|
| 845 | list[storeIndex] = list[i];
|
---|
| 846 | list[i] = tmp;
|
---|
| 847 | storeIndex++;
|
---|
| 848 | }
|
---|
| 849 | }
|
---|
| 850 | // Move pivot to its final place
|
---|
| 851 | tmp = list[right];
|
---|
| 852 | list[right] = list[storeIndex];
|
---|
| 853 | list[storeIndex] = tmp;
|
---|
| 854 |
|
---|
| 855 | return storeIndex;
|
---|
| 856 | }
|
---|
| 857 | |
---|
| 858 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 859 | |
---|
| 860 | private static int partition(Int64[] list, int left, int right, int pivotIndex)
|
---|
| 861 | {
|
---|
| 862 |
|
---|
| 863 | Int64 pivotValue = list[pivotIndex];
|
---|
| 864 |
|
---|
| 865 | Int64 tmp = list[right];
|
---|
| 866 | list[right] = list[pivotIndex];
|
---|
| 867 | list[pivotIndex] = tmp; // Move pivot to end
|
---|
| 868 | int storeIndex = left;
|
---|
| 869 | for (int i = left; i <= right; i++)
|
---|
| 870 | {
|
---|
| 871 | if (list[i] < pivotValue)
|
---|
| 872 | {
|
---|
| 873 | tmp = list[storeIndex];
|
---|
| 874 | list[storeIndex] = list[i];
|
---|
| 875 | list[i] = tmp;
|
---|
| 876 | storeIndex++;
|
---|
| 877 | }
|
---|
| 878 | }
|
---|
| 879 | // Move pivot to its final place
|
---|
| 880 | tmp = list[right];
|
---|
| 881 | list[right] = list[storeIndex];
|
---|
| 882 | list[storeIndex] = tmp;
|
---|
| 883 |
|
---|
| 884 | return storeIndex;
|
---|
| 885 | }
|
---|
| 886 | private static int partition(Int32[] list, int left, int right, int pivotIndex)
|
---|
| 887 | {
|
---|
| 888 |
|
---|
| 889 | Int32 pivotValue = list[pivotIndex];
|
---|
| 890 |
|
---|
| 891 | Int32 tmp = list[right];
|
---|
| 892 | list[right] = list[pivotIndex];
|
---|
| 893 | list[pivotIndex] = tmp; // Move pivot to end
|
---|
| 894 | int storeIndex = left;
|
---|
| 895 | for (int i = left; i <= right; i++)
|
---|
| 896 | {
|
---|
| 897 | if (list[i] < pivotValue)
|
---|
| 898 | {
|
---|
| 899 | tmp = list[storeIndex];
|
---|
| 900 | list[storeIndex] = list[i];
|
---|
| 901 | list[i] = tmp;
|
---|
| 902 | storeIndex++;
|
---|
| 903 | }
|
---|
| 904 | }
|
---|
| 905 | // Move pivot to its final place
|
---|
| 906 | tmp = list[right];
|
---|
| 907 | list[right] = list[storeIndex];
|
---|
| 908 | list[storeIndex] = tmp;
|
---|
| 909 |
|
---|
| 910 | return storeIndex;
|
---|
| 911 | }
|
---|
| 912 | private static int partition(byte[] list, int left, int right, int pivotIndex)
|
---|
| 913 | {
|
---|
| 914 |
|
---|
| 915 | byte pivotValue = list[pivotIndex];
|
---|
| 916 |
|
---|
| 917 | byte tmp = list[right];
|
---|
| 918 | list[right] = list[pivotIndex];
|
---|
| 919 | list[pivotIndex] = tmp; // Move pivot to end
|
---|
| 920 | int storeIndex = left;
|
---|
| 921 | for (int i = left; i <= right; i++)
|
---|
| 922 | {
|
---|
| 923 | if (list[i] < pivotValue)
|
---|
| 924 | {
|
---|
| 925 | tmp = list[storeIndex];
|
---|
| 926 | list[storeIndex] = list[i];
|
---|
| 927 | list[i] = tmp;
|
---|
| 928 | storeIndex++;
|
---|
| 929 | }
|
---|
| 930 | }
|
---|
| 931 | // Move pivot to its final place
|
---|
| 932 | tmp = list[right];
|
---|
| 933 | list[right] = list[storeIndex];
|
---|
| 934 | list[storeIndex] = tmp;
|
---|
| 935 |
|
---|
| 936 | return storeIndex;
|
---|
| 937 | }
|
---|
| 938 | private static int partition(fcomplex[] list, int left, int right, int pivotIndex)
|
---|
| 939 | {
|
---|
| 940 |
|
---|
| 941 | fcomplex pivotValue = list[pivotIndex];
|
---|
| 942 |
|
---|
| 943 | fcomplex tmp = list[right];
|
---|
| 944 | list[right] = list[pivotIndex];
|
---|
| 945 | list[pivotIndex] = tmp; // Move pivot to end
|
---|
| 946 | int storeIndex = left;
|
---|
| 947 | for (int i = left; i <= right; i++)
|
---|
| 948 | {
|
---|
| 949 | if (list[i] < pivotValue)
|
---|
| 950 | {
|
---|
| 951 | tmp = list[storeIndex];
|
---|
| 952 | list[storeIndex] = list[i];
|
---|
| 953 | list[i] = tmp;
|
---|
| 954 | storeIndex++;
|
---|
| 955 | }
|
---|
| 956 | }
|
---|
| 957 | // Move pivot to its final place
|
---|
| 958 | tmp = list[right];
|
---|
| 959 | list[right] = list[storeIndex];
|
---|
| 960 | list[storeIndex] = tmp;
|
---|
| 961 |
|
---|
| 962 | return storeIndex;
|
---|
| 963 | }
|
---|
| 964 | private static int partition(float[] list, int left, int right, int pivotIndex)
|
---|
| 965 | {
|
---|
| 966 |
|
---|
| 967 | float pivotValue = list[pivotIndex];
|
---|
| 968 |
|
---|
| 969 | float tmp = list[right];
|
---|
| 970 | list[right] = list[pivotIndex];
|
---|
| 971 | list[pivotIndex] = tmp; // Move pivot to end
|
---|
| 972 | int storeIndex = left;
|
---|
| 973 | for (int i = left; i <= right; i++)
|
---|
| 974 | {
|
---|
| 975 | if (list[i] < pivotValue)
|
---|
| 976 | {
|
---|
| 977 | tmp = list[storeIndex];
|
---|
| 978 | list[storeIndex] = list[i];
|
---|
| 979 | list[i] = tmp;
|
---|
| 980 | storeIndex++;
|
---|
| 981 | }
|
---|
| 982 | }
|
---|
| 983 | // Move pivot to its final place
|
---|
| 984 | tmp = list[right];
|
---|
| 985 | list[right] = list[storeIndex];
|
---|
| 986 | list[storeIndex] = tmp;
|
---|
| 987 |
|
---|
| 988 | return storeIndex;
|
---|
| 989 | }
|
---|
| 990 | private static int partition(complex[] list, int left, int right, int pivotIndex)
|
---|
| 991 | {
|
---|
| 992 |
|
---|
| 993 | complex pivotValue = list[pivotIndex];
|
---|
| 994 |
|
---|
| 995 | complex tmp = list[right];
|
---|
| 996 | list[right] = list[pivotIndex];
|
---|
| 997 | list[pivotIndex] = tmp; // Move pivot to end
|
---|
| 998 | int storeIndex = left;
|
---|
| 999 | for (int i = left; i <= right; i++)
|
---|
| 1000 | {
|
---|
| 1001 | if (list[i] < pivotValue)
|
---|
| 1002 | {
|
---|
| 1003 | tmp = list[storeIndex];
|
---|
| 1004 | list[storeIndex] = list[i];
|
---|
| 1005 | list[i] = tmp;
|
---|
| 1006 | storeIndex++;
|
---|
| 1007 | }
|
---|
| 1008 | }
|
---|
| 1009 | // Move pivot to its final place
|
---|
| 1010 | tmp = list[right];
|
---|
| 1011 | list[right] = list[storeIndex];
|
---|
| 1012 | list[storeIndex] = tmp;
|
---|
| 1013 |
|
---|
| 1014 | return storeIndex;
|
---|
| 1015 | }
|
---|
| 1016 |
|
---|
| 1017 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 1018 |
|
---|
| 1019 | |
---|
| 1020 | /// <summary>
|
---|
| 1021 | /// Quick select algorithm: Find the k-th smallest element in list.
|
---|
| 1022 | /// Will change the list parameter!
|
---|
| 1023 | /// </summary>
|
---|
| 1024 | /// <remarks><para>Elements in the array list will be reordered. Make sure to pass a copy if you intend to use that data later</para></remarks>
|
---|
| 1025 | /// <param name="list">The list to search in</param>
|
---|
| 1026 | /// <param name="left">The first index in the list to start the search</param>
|
---|
| 1027 | /// <param name="right">The last index in the list to end the search</param>
|
---|
| 1028 | /// <param name="k">The k-th smallest element to find in list[left:right]. If k is smaller than 1 or larger than the number of elements the smallest/largest value will be returned.</param>
|
---|
| 1029 | /// <param name="position">Returns the index in list where the smallest element was found</param>
|
---|
| 1030 | /// <returns>The k-th smallest element</returns>
|
---|
| 1031 | private static double quickselect_worker(double[] list, int left, int right, int k, out int position)
|
---|
| 1032 | {
|
---|
| 1033 | if ((left < 0) || (right > list.Length - 1))
|
---|
| 1034 | throw new Exception("Arguments out of range. Left and right must be within the array limits");
|
---|
| 1035 | position = -1;
|
---|
| 1036 | while (true)
|
---|
| 1037 | {
|
---|
| 1038 | if (left == right) // If the list contains only one element
|
---|
| 1039 | {
|
---|
| 1040 | position = left;
|
---|
| 1041 | return list[left]; // Return that element
|
---|
| 1042 | }
|
---|
| 1043 | // select pivotIndex between left and right
|
---|
| 1044 | int pivotIndex = (left + right) / 2;
|
---|
| 1045 | position = partition(list, left, right, pivotIndex); // = new pivot index
|
---|
| 1046 | int pivotDist = position - left + 1;
|
---|
| 1047 | // The pivot is in its final sorted position,
|
---|
| 1048 | // so pivotDist reflects its 1-based position if list were sorted
|
---|
| 1049 | if (pivotDist == k)
|
---|
| 1050 | return list[position];
|
---|
| 1051 | else if (k < pivotDist)
|
---|
| 1052 | {
|
---|
| 1053 | //return quickselect(list, left, pivotNewIndex - 1, k);
|
---|
| 1054 | right = position - 1;
|
---|
| 1055 | }
|
---|
| 1056 | else
|
---|
| 1057 | {
|
---|
| 1058 | // return quickselect(list, pivotNewIndex + 1, right, k - pivotDist);
|
---|
| 1059 | left = position + 1;
|
---|
| 1060 | k = k - pivotDist;
|
---|
| 1061 | }
|
---|
| 1062 | }
|
---|
| 1063 | }
|
---|
| 1064 | |
---|
| 1065 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 1066 | |
---|
| 1067 | /// <summary>
|
---|
| 1068 | /// Quick select algorithm: Find the k-th smallest element in list.
|
---|
| 1069 | /// Will change the list parameter!
|
---|
| 1070 | /// </summary>
|
---|
| 1071 | /// <remarks><para>Elements in the array list will be reordered. Make sure to pass a copy if you intend to use that data later</para></remarks>
|
---|
| 1072 | /// <param name="list">The list to search in</param>
|
---|
| 1073 | /// <param name="left">The first index in the list to start the search</param>
|
---|
| 1074 | /// <param name="right">The last index in the list to end the search</param>
|
---|
| 1075 | /// <param name="k">The k-th smallest element to find in list[left:right]. If k is smaller than 1 or larger than the number of elements the smallest/largest value will be returned.</param>
|
---|
| 1076 | /// <param name="position">Returns the index in list where the smallest element was found</param>
|
---|
| 1077 | /// <returns>The k-th smallest element</returns>
|
---|
| 1078 | private static Int64 quickselect_worker(Int64[] list, int left, int right, int k, out int position)
|
---|
| 1079 | {
|
---|
| 1080 | if ((left < 0) || (right > list.Length - 1))
|
---|
| 1081 | throw new Exception("Arguments out of range. Left and right must be within the array limits");
|
---|
| 1082 | position = -1;
|
---|
| 1083 | while (true)
|
---|
| 1084 | {
|
---|
| 1085 | if (left == right) // If the list contains only one element
|
---|
| 1086 | {
|
---|
| 1087 | position = left;
|
---|
| 1088 | return list[left]; // Return that element
|
---|
| 1089 | }
|
---|
| 1090 | // select pivotIndex between left and right
|
---|
| 1091 | int pivotIndex = (left + right) / 2;
|
---|
| 1092 | position = partition(list, left, right, pivotIndex); // = new pivot index
|
---|
| 1093 | int pivotDist = position - left + 1;
|
---|
| 1094 | // The pivot is in its final sorted position,
|
---|
| 1095 | // so pivotDist reflects its 1-based position if list were sorted
|
---|
| 1096 | if (pivotDist == k)
|
---|
| 1097 | return list[position];
|
---|
| 1098 | else if (k < pivotDist)
|
---|
| 1099 | {
|
---|
| 1100 | //return quickselect(list, left, pivotNewIndex - 1, k);
|
---|
| 1101 | right = position - 1;
|
---|
| 1102 | }
|
---|
| 1103 | else
|
---|
| 1104 | {
|
---|
| 1105 | // return quickselect(list, pivotNewIndex + 1, right, k - pivotDist);
|
---|
| 1106 | left = position + 1;
|
---|
| 1107 | k = k - pivotDist;
|
---|
| 1108 | }
|
---|
| 1109 | }
|
---|
| 1110 | }
|
---|
| 1111 | /// <summary>
|
---|
| 1112 | /// Quick select algorithm: Find the k-th smallest element in list.
|
---|
| 1113 | /// Will change the list parameter!
|
---|
| 1114 | /// </summary>
|
---|
| 1115 | /// <remarks><para>Elements in the array list will be reordered. Make sure to pass a copy if you intend to use that data later</para></remarks>
|
---|
| 1116 | /// <param name="list">The list to search in</param>
|
---|
| 1117 | /// <param name="left">The first index in the list to start the search</param>
|
---|
| 1118 | /// <param name="right">The last index in the list to end the search</param>
|
---|
| 1119 | /// <param name="k">The k-th smallest element to find in list[left:right]. If k is smaller than 1 or larger than the number of elements the smallest/largest value will be returned.</param>
|
---|
| 1120 | /// <param name="position">Returns the index in list where the smallest element was found</param>
|
---|
| 1121 | /// <returns>The k-th smallest element</returns>
|
---|
| 1122 | private static Int32 quickselect_worker(Int32[] list, int left, int right, int k, out int position)
|
---|
| 1123 | {
|
---|
| 1124 | if ((left < 0) || (right > list.Length - 1))
|
---|
| 1125 | throw new Exception("Arguments out of range. Left and right must be within the array limits");
|
---|
| 1126 | position = -1;
|
---|
| 1127 | while (true)
|
---|
| 1128 | {
|
---|
| 1129 | if (left == right) // If the list contains only one element
|
---|
| 1130 | {
|
---|
| 1131 | position = left;
|
---|
| 1132 | return list[left]; // Return that element
|
---|
| 1133 | }
|
---|
| 1134 | // select pivotIndex between left and right
|
---|
| 1135 | int pivotIndex = (left + right) / 2;
|
---|
| 1136 | position = partition(list, left, right, pivotIndex); // = new pivot index
|
---|
| 1137 | int pivotDist = position - left + 1;
|
---|
| 1138 | // The pivot is in its final sorted position,
|
---|
| 1139 | // so pivotDist reflects its 1-based position if list were sorted
|
---|
| 1140 | if (pivotDist == k)
|
---|
| 1141 | return list[position];
|
---|
| 1142 | else if (k < pivotDist)
|
---|
| 1143 | {
|
---|
| 1144 | //return quickselect(list, left, pivotNewIndex - 1, k);
|
---|
| 1145 | right = position - 1;
|
---|
| 1146 | }
|
---|
| 1147 | else
|
---|
| 1148 | {
|
---|
| 1149 | // return quickselect(list, pivotNewIndex + 1, right, k - pivotDist);
|
---|
| 1150 | left = position + 1;
|
---|
| 1151 | k = k - pivotDist;
|
---|
| 1152 | }
|
---|
| 1153 | }
|
---|
| 1154 | }
|
---|
| 1155 | /// <summary>
|
---|
| 1156 | /// Quick select algorithm: Find the k-th smallest element in list.
|
---|
| 1157 | /// Will change the list parameter!
|
---|
| 1158 | /// </summary>
|
---|
| 1159 | /// <remarks><para>Elements in the array list will be reordered. Make sure to pass a copy if you intend to use that data later</para></remarks>
|
---|
| 1160 | /// <param name="list">The list to search in</param>
|
---|
| 1161 | /// <param name="left">The first index in the list to start the search</param>
|
---|
| 1162 | /// <param name="right">The last index in the list to end the search</param>
|
---|
| 1163 | /// <param name="k">The k-th smallest element to find in list[left:right]. If k is smaller than 1 or larger than the number of elements the smallest/largest value will be returned.</param>
|
---|
| 1164 | /// <param name="position">Returns the index in list where the smallest element was found</param>
|
---|
| 1165 | /// <returns>The k-th smallest element</returns>
|
---|
| 1166 | private static byte quickselect_worker(byte[] list, int left, int right, int k, out int position)
|
---|
| 1167 | {
|
---|
| 1168 | if ((left < 0) || (right > list.Length - 1))
|
---|
| 1169 | throw new Exception("Arguments out of range. Left and right must be within the array limits");
|
---|
| 1170 | position = -1;
|
---|
| 1171 | while (true)
|
---|
| 1172 | {
|
---|
| 1173 | if (left == right) // If the list contains only one element
|
---|
| 1174 | {
|
---|
| 1175 | position = left;
|
---|
| 1176 | return list[left]; // Return that element
|
---|
| 1177 | }
|
---|
| 1178 | // select pivotIndex between left and right
|
---|
| 1179 | int pivotIndex = (left + right) / 2;
|
---|
| 1180 | position = partition(list, left, right, pivotIndex); // = new pivot index
|
---|
| 1181 | int pivotDist = position - left + 1;
|
---|
| 1182 | // The pivot is in its final sorted position,
|
---|
| 1183 | // so pivotDist reflects its 1-based position if list were sorted
|
---|
| 1184 | if (pivotDist == k)
|
---|
| 1185 | return list[position];
|
---|
| 1186 | else if (k < pivotDist)
|
---|
| 1187 | {
|
---|
| 1188 | //return quickselect(list, left, pivotNewIndex - 1, k);
|
---|
| 1189 | right = position - 1;
|
---|
| 1190 | }
|
---|
| 1191 | else
|
---|
| 1192 | {
|
---|
| 1193 | // return quickselect(list, pivotNewIndex + 1, right, k - pivotDist);
|
---|
| 1194 | left = position + 1;
|
---|
| 1195 | k = k - pivotDist;
|
---|
| 1196 | }
|
---|
| 1197 | }
|
---|
| 1198 | }
|
---|
| 1199 | /// <summary>
|
---|
| 1200 | /// Quick select algorithm: Find the k-th smallest element in list.
|
---|
| 1201 | /// Will change the list parameter!
|
---|
| 1202 | /// </summary>
|
---|
| 1203 | /// <remarks><para>Elements in the array list will be reordered. Make sure to pass a copy if you intend to use that data later</para></remarks>
|
---|
| 1204 | /// <param name="list">The list to search in</param>
|
---|
| 1205 | /// <param name="left">The first index in the list to start the search</param>
|
---|
| 1206 | /// <param name="right">The last index in the list to end the search</param>
|
---|
| 1207 | /// <param name="k">The k-th smallest element to find in list[left:right]. If k is smaller than 1 or larger than the number of elements the smallest/largest value will be returned.</param>
|
---|
| 1208 | /// <param name="position">Returns the index in list where the smallest element was found</param>
|
---|
| 1209 | /// <returns>The k-th smallest element</returns>
|
---|
| 1210 | private static fcomplex quickselect_worker(fcomplex[] list, int left, int right, int k, out int position)
|
---|
| 1211 | {
|
---|
| 1212 | if ((left < 0) || (right > list.Length - 1))
|
---|
| 1213 | throw new Exception("Arguments out of range. Left and right must be within the array limits");
|
---|
| 1214 | position = -1;
|
---|
| 1215 | while (true)
|
---|
| 1216 | {
|
---|
| 1217 | if (left == right) // If the list contains only one element
|
---|
| 1218 | {
|
---|
| 1219 | position = left;
|
---|
| 1220 | return list[left]; // Return that element
|
---|
| 1221 | }
|
---|
| 1222 | // select pivotIndex between left and right
|
---|
| 1223 | int pivotIndex = (left + right) / 2;
|
---|
| 1224 | position = partition(list, left, right, pivotIndex); // = new pivot index
|
---|
| 1225 | int pivotDist = position - left + 1;
|
---|
| 1226 | // The pivot is in its final sorted position,
|
---|
| 1227 | // so pivotDist reflects its 1-based position if list were sorted
|
---|
| 1228 | if (pivotDist == k)
|
---|
| 1229 | return list[position];
|
---|
| 1230 | else if (k < pivotDist)
|
---|
| 1231 | {
|
---|
| 1232 | //return quickselect(list, left, pivotNewIndex - 1, k);
|
---|
| 1233 | right = position - 1;
|
---|
| 1234 | }
|
---|
| 1235 | else
|
---|
| 1236 | {
|
---|
| 1237 | // return quickselect(list, pivotNewIndex + 1, right, k - pivotDist);
|
---|
| 1238 | left = position + 1;
|
---|
| 1239 | k = k - pivotDist;
|
---|
| 1240 | }
|
---|
| 1241 | }
|
---|
| 1242 | }
|
---|
| 1243 | /// <summary>
|
---|
| 1244 | /// Quick select algorithm: Find the k-th smallest element in list.
|
---|
| 1245 | /// Will change the list parameter!
|
---|
| 1246 | /// </summary>
|
---|
| 1247 | /// <remarks><para>Elements in the array list will be reordered. Make sure to pass a copy if you intend to use that data later</para></remarks>
|
---|
| 1248 | /// <param name="list">The list to search in</param>
|
---|
| 1249 | /// <param name="left">The first index in the list to start the search</param>
|
---|
| 1250 | /// <param name="right">The last index in the list to end the search</param>
|
---|
| 1251 | /// <param name="k">The k-th smallest element to find in list[left:right]. If k is smaller than 1 or larger than the number of elements the smallest/largest value will be returned.</param>
|
---|
| 1252 | /// <param name="position">Returns the index in list where the smallest element was found</param>
|
---|
| 1253 | /// <returns>The k-th smallest element</returns>
|
---|
| 1254 | private static float quickselect_worker(float[] list, int left, int right, int k, out int position)
|
---|
| 1255 | {
|
---|
| 1256 | if ((left < 0) || (right > list.Length - 1))
|
---|
| 1257 | throw new Exception("Arguments out of range. Left and right must be within the array limits");
|
---|
| 1258 | position = -1;
|
---|
| 1259 | while (true)
|
---|
| 1260 | {
|
---|
| 1261 | if (left == right) // If the list contains only one element
|
---|
| 1262 | {
|
---|
| 1263 | position = left;
|
---|
| 1264 | return list[left]; // Return that element
|
---|
| 1265 | }
|
---|
| 1266 | // select pivotIndex between left and right
|
---|
| 1267 | int pivotIndex = (left + right) / 2;
|
---|
| 1268 | position = partition(list, left, right, pivotIndex); // = new pivot index
|
---|
| 1269 | int pivotDist = position - left + 1;
|
---|
| 1270 | // The pivot is in its final sorted position,
|
---|
| 1271 | // so pivotDist reflects its 1-based position if list were sorted
|
---|
| 1272 | if (pivotDist == k)
|
---|
| 1273 | return list[position];
|
---|
| 1274 | else if (k < pivotDist)
|
---|
| 1275 | {
|
---|
| 1276 | //return quickselect(list, left, pivotNewIndex - 1, k);
|
---|
| 1277 | right = position - 1;
|
---|
| 1278 | }
|
---|
| 1279 | else
|
---|
| 1280 | {
|
---|
| 1281 | // return quickselect(list, pivotNewIndex + 1, right, k - pivotDist);
|
---|
| 1282 | left = position + 1;
|
---|
| 1283 | k = k - pivotDist;
|
---|
| 1284 | }
|
---|
| 1285 | }
|
---|
| 1286 | }
|
---|
| 1287 | /// <summary>
|
---|
| 1288 | /// Quick select algorithm: Find the k-th smallest element in list.
|
---|
| 1289 | /// Will change the list parameter!
|
---|
| 1290 | /// </summary>
|
---|
| 1291 | /// <remarks><para>Elements in the array list will be reordered. Make sure to pass a copy if you intend to use that data later</para></remarks>
|
---|
| 1292 | /// <param name="list">The list to search in</param>
|
---|
| 1293 | /// <param name="left">The first index in the list to start the search</param>
|
---|
| 1294 | /// <param name="right">The last index in the list to end the search</param>
|
---|
| 1295 | /// <param name="k">The k-th smallest element to find in list[left:right]. If k is smaller than 1 or larger than the number of elements the smallest/largest value will be returned.</param>
|
---|
| 1296 | /// <param name="position">Returns the index in list where the smallest element was found</param>
|
---|
| 1297 | /// <returns>The k-th smallest element</returns>
|
---|
| 1298 | private static complex quickselect_worker(complex[] list, int left, int right, int k, out int position)
|
---|
| 1299 | {
|
---|
| 1300 | if ((left < 0) || (right > list.Length - 1))
|
---|
| 1301 | throw new Exception("Arguments out of range. Left and right must be within the array limits");
|
---|
| 1302 | position = -1;
|
---|
| 1303 | while (true)
|
---|
| 1304 | {
|
---|
| 1305 | if (left == right) // If the list contains only one element
|
---|
| 1306 | {
|
---|
| 1307 | position = left;
|
---|
| 1308 | return list[left]; // Return that element
|
---|
| 1309 | }
|
---|
| 1310 | // select pivotIndex between left and right
|
---|
| 1311 | int pivotIndex = (left + right) / 2;
|
---|
| 1312 | position = partition(list, left, right, pivotIndex); // = new pivot index
|
---|
| 1313 | int pivotDist = position - left + 1;
|
---|
| 1314 | // The pivot is in its final sorted position,
|
---|
| 1315 | // so pivotDist reflects its 1-based position if list were sorted
|
---|
| 1316 | if (pivotDist == k)
|
---|
| 1317 | return list[position];
|
---|
| 1318 | else if (k < pivotDist)
|
---|
| 1319 | {
|
---|
| 1320 | //return quickselect(list, left, pivotNewIndex - 1, k);
|
---|
| 1321 | right = position - 1;
|
---|
| 1322 | }
|
---|
| 1323 | else
|
---|
| 1324 | {
|
---|
| 1325 | // return quickselect(list, pivotNewIndex + 1, right, k - pivotDist);
|
---|
| 1326 | left = position + 1;
|
---|
| 1327 | k = k - pivotDist;
|
---|
| 1328 | }
|
---|
| 1329 | }
|
---|
| 1330 | }
|
---|
| 1331 |
|
---|
| 1332 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 1333 | #endregion
|
---|
| 1334 | }
|
---|
| 1335 | } |
---|