[9102] | 1 | ///
|
---|
| 2 | /// This file is part of ILNumerics Community Edition.
|
---|
| 3 | ///
|
---|
| 4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
| 5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
| 6 | ///
|
---|
| 7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
| 8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
| 9 | /// the Free Software Foundation.
|
---|
| 10 | ///
|
---|
| 11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
| 12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | /// GNU General Public License for more details.
|
---|
| 15 | ///
|
---|
| 16 | /// You should have received a copy of the GNU General Public License
|
---|
| 17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
| 18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | ///
|
---|
| 20 | /// In addition this software uses the following components and/or licenses:
|
---|
| 21 | ///
|
---|
| 22 | /// =================================================================================
|
---|
| 23 | /// The Open Toolkit Library License
|
---|
| 24 | ///
|
---|
| 25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
| 26 | ///
|
---|
| 27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
| 28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
| 29 | /// in the Software without restriction, including without limitation the rights to
|
---|
| 30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
| 32 | /// so, subject to the following conditions:
|
---|
| 33 | ///
|
---|
| 34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
| 35 | /// copies or substantial portions of the Software.
|
---|
| 36 | ///
|
---|
| 37 | /// =================================================================================
|
---|
| 38 | ///
|
---|
| 39 |
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Text;
|
---|
| 43 | using System.Threading;
|
---|
| 44 | using ILNumerics.Storage;
|
---|
| 45 | using ILNumerics.Misc;
|
---|
| 46 | using ILNumerics.Exceptions;
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 |
|
---|
| 50 | namespace ILNumerics {
|
---|
| 51 | public partial class ILMath {
|
---|
| 52 | |
---|
| 53 | /// <summary>
|
---|
| 54 | /// Sum elements along first non singleton dimension ignoring NaN values
|
---|
| 55 | /// </summary>
|
---|
| 56 | /// <param name="A">Input array</param>
|
---|
| 57 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 58 | /// <returns>Sum of elements along specified of first non singleton dimension, ignoring nan values</returns>
|
---|
| 59 | /// <remarks><para>The array returned will have the same size as <paramref name="A"/>, with the specified or first non singleton dimension
|
---|
| 60 | /// reduced to the length 1. It will contain the sum of all elements along that dimension after removing NaN values respectively. </para>
|
---|
| 61 | /// <para>If A contains an all NaN vector along <paramref name="dim"/> ,
|
---|
| 62 | /// the resulting sum will be 0 - not NaN! This corresponds to the sum of an empty vector.</para></remarks>
|
---|
| 63 | public static ILRetArray<double> nansum(ILInArray<double> A, int dim = -1)
|
---|
| 64 | {
|
---|
| 65 | if (dim < 0)
|
---|
| 66 | dim = A.Size.WorkingDimension();
|
---|
| 67 | return nansum_internal(A, dim, false);
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | /// <summary>
|
---|
| 71 | /// Depending on settings, calculate nansum or nanmean
|
---|
| 72 | /// </summary>
|
---|
| 73 | private static ILRetArray<double> nansum_internal (ILInArray<double> A, int dim, bool computeMean) {
|
---|
| 74 | using (ILScope.Enter(A)) {
|
---|
| 75 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 76 | return A.C;
|
---|
| 77 |
|
---|
| 78 | if (A.IsScalar) {
|
---|
| 79 | return array<double>(new double[1] { A.GetValue(0) }, 1, 1);
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | if (A.S[dim] == 1) return A.C;
|
---|
| 83 |
|
---|
| 84 | int[] newDims = A.S.ToIntArray();
|
---|
| 85 | newDims[dim] = 1;
|
---|
| 86 | ILSize retDimension = new ILSize(newDims);
|
---|
| 87 |
|
---|
| 88 | if (A.IsEmpty)
|
---|
| 89 | return empty<double>(retDimension);
|
---|
| 90 |
|
---|
| 91 | double[] retArr = ILMemoryPool.Pool.New<double>(retDimension.NumberOfElements);
|
---|
| 92 |
|
---|
| 93 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 94 | int dimLen = A.Size[dim];
|
---|
| 95 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 96 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 97 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 98 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 99 | int numelA = A.S.NumberOfElements;
|
---|
| 100 |
|
---|
| 101 | double[] aArray = A.GetArrayForRead();
|
---|
| 102 | if (maxRuns == 1) {
|
---|
| 103 |
|
---|
| 104 | double tmp = 0;
|
---|
| 105 | if (computeMean)
|
---|
| 106 | {
|
---|
| 107 | int cnt = 0;
|
---|
| 108 | for (int j = 0; j < dimLen; j++)
|
---|
| 109 | {
|
---|
| 110 | if (!/*HC:inArr1*/double.IsNaN(aArray[j]))
|
---|
| 111 | {
|
---|
| 112 | tmp += aArray[j];
|
---|
| 113 | cnt++;
|
---|
| 114 | }
|
---|
| 115 | }
|
---|
| 116 | if (cnt == 0)
|
---|
| 117 | retArr[0] = double.NaN;
|
---|
| 118 | else
|
---|
| 119 | retArr[0] = tmp / cnt;
|
---|
| 120 | }
|
---|
| 121 | else
|
---|
| 122 | {
|
---|
| 123 | for (int j = 0; j < dimLen; j++)
|
---|
| 124 | {
|
---|
| 125 | if (!/*HC:inArr1*/double.IsNaN(aArray[j]))
|
---|
| 126 | tmp += aArray[j];
|
---|
| 127 | }
|
---|
| 128 | retArr[0] = tmp;
|
---|
| 129 | }
|
---|
| 130 | } else {
|
---|
| 131 | #region may run parallel
|
---|
| 132 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 133 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 134 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 135 |
|
---|
| 136 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 137 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 138 | workItemLength = maxRuns / workItemCount;
|
---|
| 139 | } else {
|
---|
| 140 | workItemLength = maxRuns / 2;
|
---|
| 141 | workItemCount = 2;
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | } else {
|
---|
| 145 | workItemLength = maxRuns;
|
---|
| 146 | workItemCount = 1;
|
---|
| 147 | }
|
---|
| 148 | Action<object> action = (data) => {
|
---|
| 149 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 150 | int from = range.Item1, to = range.Item2;
|
---|
| 151 | for (int c = from; c < to; c++) {
|
---|
| 152 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 153 | long posOut = ((long)c * incOut);
|
---|
| 154 | if (posOut > modOut)
|
---|
| 155 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 156 |
|
---|
| 157 | double tmp = 0;
|
---|
| 158 | int end = pos + dimLen * inc;
|
---|
| 159 | if (computeMean)
|
---|
| 160 | {
|
---|
| 161 | int cnt = 0;
|
---|
| 162 | for (int j = pos; j < end; j += inc)
|
---|
| 163 | {
|
---|
| 164 | if (!/*HC:inArr1*/double.IsNaN(aArray[j]))
|
---|
| 165 | {
|
---|
| 166 | tmp += aArray[j];
|
---|
| 167 | cnt++;
|
---|
| 168 | }
|
---|
| 169 | }
|
---|
| 170 | if (cnt == 0)
|
---|
| 171 | retArr[posOut] = double.NaN;
|
---|
| 172 | else
|
---|
| 173 | retArr[posOut] = tmp / cnt;
|
---|
| 174 | }
|
---|
| 175 | else
|
---|
| 176 | {
|
---|
| 177 |
|
---|
| 178 | for (int j = pos; j < end; j += inc)
|
---|
| 179 | {
|
---|
| 180 | if (!/*HC:inArr1*/double.IsNaN(aArray[j]))
|
---|
| 181 | tmp += aArray[j];
|
---|
| 182 | }
|
---|
| 183 | retArr[posOut] = tmp;
|
---|
| 184 | }
|
---|
| 185 | }
|
---|
| 186 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 187 | };
|
---|
| 188 | for (; i < workItemCount - 1; i++) {
|
---|
| 189 | Interlocked.Increment(ref workerCount);
|
---|
| 190 |
|
---|
| 191 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 192 | }
|
---|
| 193 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 194 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 195 | #endregion
|
---|
| 196 | }
|
---|
| 197 | return array(retArr, newDims);
|
---|
| 198 | }
|
---|
| 199 | }
|
---|
| 200 | |
---|
| 201 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 202 | |
---|
| 203 | /// <summary>
|
---|
| 204 | /// Sum elements along first non singleton dimension ignoring NaN values
|
---|
| 205 | /// </summary>
|
---|
| 206 | /// <param name="A">Input array</param>
|
---|
| 207 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 208 | /// <returns>Sum of elements along specified of first non singleton dimension, ignoring nan values</returns>
|
---|
| 209 | /// <remarks><para>The array returned will have the same size as <paramref name="A"/>, with the specified or first non singleton dimension
|
---|
| 210 | /// reduced to the length 1. It will contain the sum of all elements along that dimension after removing NaN values respectively. </para>
|
---|
| 211 | /// <para>If A contains an all NaN vector along <paramref name="dim"/> ,
|
---|
| 212 | /// the resulting sum will be 0 - not NaN! This corresponds to the sum of an empty vector.</para></remarks>
|
---|
| 213 | public static ILRetArray<fcomplex> nansum(ILInArray<fcomplex> A, int dim = -1)
|
---|
| 214 | {
|
---|
| 215 | if (dim < 0)
|
---|
| 216 | dim = A.Size.WorkingDimension();
|
---|
| 217 | return nansum_internal(A, dim, false);
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | /// <summary>
|
---|
| 221 | /// Depending on settings, calculate nansum or nanmean
|
---|
| 222 | /// </summary>
|
---|
| 223 | private static ILRetArray<fcomplex> nansum_internal (ILInArray<fcomplex> A, int dim, bool computeMean) {
|
---|
| 224 | using (ILScope.Enter(A)) {
|
---|
| 225 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 226 | return A.C;
|
---|
| 227 |
|
---|
| 228 | if (A.IsScalar) {
|
---|
| 229 | return array<fcomplex>(new fcomplex[1] { A.GetValue(0) }, 1, 1);
|
---|
| 230 | }
|
---|
| 231 |
|
---|
| 232 | if (A.S[dim] == 1) return A.C;
|
---|
| 233 |
|
---|
| 234 | int[] newDims = A.S.ToIntArray();
|
---|
| 235 | newDims[dim] = 1;
|
---|
| 236 | ILSize retDimension = new ILSize(newDims);
|
---|
| 237 |
|
---|
| 238 | if (A.IsEmpty)
|
---|
| 239 | return empty<fcomplex>(retDimension);
|
---|
| 240 |
|
---|
| 241 | fcomplex[] retArr = ILMemoryPool.Pool.New<fcomplex>(retDimension.NumberOfElements);
|
---|
| 242 |
|
---|
| 243 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 244 | int dimLen = A.Size[dim];
|
---|
| 245 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 246 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 247 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 248 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 249 | int numelA = A.S.NumberOfElements;
|
---|
| 250 |
|
---|
| 251 | fcomplex[] aArray = A.GetArrayForRead();
|
---|
| 252 | if (maxRuns == 1) {
|
---|
| 253 |
|
---|
| 254 | fcomplex tmp = 0;
|
---|
| 255 | if (computeMean)
|
---|
| 256 | {
|
---|
| 257 | int cnt = 0;
|
---|
| 258 | for (int j = 0; j < dimLen; j++)
|
---|
| 259 | {
|
---|
| 260 | if (!/*HC:*/fcomplex.IsNaN(aArray[j]))
|
---|
| 261 | {
|
---|
| 262 | tmp += aArray[j];
|
---|
| 263 | cnt++;
|
---|
| 264 | }
|
---|
| 265 | }
|
---|
| 266 | if (cnt == 0)
|
---|
| 267 | retArr[0] = fcomplex.NaN;
|
---|
| 268 | else
|
---|
| 269 | retArr[0] = tmp / cnt;
|
---|
| 270 | }
|
---|
| 271 | else
|
---|
| 272 | {
|
---|
| 273 | for (int j = 0; j < dimLen; j++)
|
---|
| 274 | {
|
---|
| 275 | if (!/*HC:*/fcomplex.IsNaN(aArray[j]))
|
---|
| 276 | tmp += aArray[j];
|
---|
| 277 | }
|
---|
| 278 | retArr[0] = tmp;
|
---|
| 279 | }
|
---|
| 280 | } else {
|
---|
| 281 | #region may run parallel
|
---|
| 282 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 283 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 284 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 285 |
|
---|
| 286 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 287 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 288 | workItemLength = maxRuns / workItemCount;
|
---|
| 289 | } else {
|
---|
| 290 | workItemLength = maxRuns / 2;
|
---|
| 291 | workItemCount = 2;
|
---|
| 292 | }
|
---|
| 293 |
|
---|
| 294 | } else {
|
---|
| 295 | workItemLength = maxRuns;
|
---|
| 296 | workItemCount = 1;
|
---|
| 297 | }
|
---|
| 298 | Action<object> action = (data) => {
|
---|
| 299 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 300 | int from = range.Item1, to = range.Item2;
|
---|
| 301 | for (int c = from; c < to; c++) {
|
---|
| 302 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 303 | long posOut = ((long)c * incOut);
|
---|
| 304 | if (posOut > modOut)
|
---|
| 305 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 306 |
|
---|
| 307 | fcomplex tmp = 0;
|
---|
| 308 | int end = pos + dimLen * inc;
|
---|
| 309 | if (computeMean)
|
---|
| 310 | {
|
---|
| 311 | int cnt = 0;
|
---|
| 312 | for (int j = pos; j < end; j += inc)
|
---|
| 313 | {
|
---|
| 314 | if (!/*HC:*/fcomplex.IsNaN(aArray[j]))
|
---|
| 315 | {
|
---|
| 316 | tmp += aArray[j];
|
---|
| 317 | cnt++;
|
---|
| 318 | }
|
---|
| 319 | }
|
---|
| 320 | if (cnt == 0)
|
---|
| 321 | retArr[posOut] = fcomplex.NaN;
|
---|
| 322 | else
|
---|
| 323 | retArr[posOut] = tmp / cnt;
|
---|
| 324 | }
|
---|
| 325 | else
|
---|
| 326 | {
|
---|
| 327 |
|
---|
| 328 | for (int j = pos; j < end; j += inc)
|
---|
| 329 | {
|
---|
| 330 | if (!/*HC:*/fcomplex.IsNaN(aArray[j]))
|
---|
| 331 | tmp += aArray[j];
|
---|
| 332 | }
|
---|
| 333 | retArr[posOut] = tmp;
|
---|
| 334 | }
|
---|
| 335 | }
|
---|
| 336 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 337 | };
|
---|
| 338 | for (; i < workItemCount - 1; i++) {
|
---|
| 339 | Interlocked.Increment(ref workerCount);
|
---|
| 340 |
|
---|
| 341 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 342 | }
|
---|
| 343 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 344 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 345 | #endregion
|
---|
| 346 | }
|
---|
| 347 | return array(retArr, newDims);
|
---|
| 348 | }
|
---|
| 349 | }
|
---|
| 350 | /// <summary>
|
---|
| 351 | /// Sum elements along first non singleton dimension ignoring NaN values
|
---|
| 352 | /// </summary>
|
---|
| 353 | /// <param name="A">Input array</param>
|
---|
| 354 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 355 | /// <returns>Sum of elements along specified of first non singleton dimension, ignoring nan values</returns>
|
---|
| 356 | /// <remarks><para>The array returned will have the same size as <paramref name="A"/>, with the specified or first non singleton dimension
|
---|
| 357 | /// reduced to the length 1. It will contain the sum of all elements along that dimension after removing NaN values respectively. </para>
|
---|
| 358 | /// <para>If A contains an all NaN vector along <paramref name="dim"/> ,
|
---|
| 359 | /// the resulting sum will be 0 - not NaN! This corresponds to the sum of an empty vector.</para></remarks>
|
---|
| 360 | public static ILRetArray<float> nansum(ILInArray<float> A, int dim = -1)
|
---|
| 361 | {
|
---|
| 362 | if (dim < 0)
|
---|
| 363 | dim = A.Size.WorkingDimension();
|
---|
| 364 | return nansum_internal(A, dim, false);
|
---|
| 365 | }
|
---|
| 366 |
|
---|
| 367 | /// <summary>
|
---|
| 368 | /// Depending on settings, calculate nansum or nanmean
|
---|
| 369 | /// </summary>
|
---|
| 370 | private static ILRetArray<float> nansum_internal (ILInArray<float> A, int dim, bool computeMean) {
|
---|
| 371 | using (ILScope.Enter(A)) {
|
---|
| 372 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 373 | return A.C;
|
---|
| 374 |
|
---|
| 375 | if (A.IsScalar) {
|
---|
| 376 | return array<float>(new float[1] { A.GetValue(0) }, 1, 1);
|
---|
| 377 | }
|
---|
| 378 |
|
---|
| 379 | if (A.S[dim] == 1) return A.C;
|
---|
| 380 |
|
---|
| 381 | int[] newDims = A.S.ToIntArray();
|
---|
| 382 | newDims[dim] = 1;
|
---|
| 383 | ILSize retDimension = new ILSize(newDims);
|
---|
| 384 |
|
---|
| 385 | if (A.IsEmpty)
|
---|
| 386 | return empty<float>(retDimension);
|
---|
| 387 |
|
---|
| 388 | float[] retArr = ILMemoryPool.Pool.New<float>(retDimension.NumberOfElements);
|
---|
| 389 |
|
---|
| 390 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 391 | int dimLen = A.Size[dim];
|
---|
| 392 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 393 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 394 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 395 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 396 | int numelA = A.S.NumberOfElements;
|
---|
| 397 |
|
---|
| 398 | float[] aArray = A.GetArrayForRead();
|
---|
| 399 | if (maxRuns == 1) {
|
---|
| 400 |
|
---|
| 401 | float tmp = 0;
|
---|
| 402 | if (computeMean)
|
---|
| 403 | {
|
---|
| 404 | int cnt = 0;
|
---|
| 405 | for (int j = 0; j < dimLen; j++)
|
---|
| 406 | {
|
---|
| 407 | if (!/*HC:*/float.IsNaN(aArray[j]))
|
---|
| 408 | {
|
---|
| 409 | tmp += aArray[j];
|
---|
| 410 | cnt++;
|
---|
| 411 | }
|
---|
| 412 | }
|
---|
| 413 | if (cnt == 0)
|
---|
| 414 | retArr[0] = float.NaN;
|
---|
| 415 | else
|
---|
| 416 | retArr[0] = tmp / cnt;
|
---|
| 417 | }
|
---|
| 418 | else
|
---|
| 419 | {
|
---|
| 420 | for (int j = 0; j < dimLen; j++)
|
---|
| 421 | {
|
---|
| 422 | if (!/*HC:*/float.IsNaN(aArray[j]))
|
---|
| 423 | tmp += aArray[j];
|
---|
| 424 | }
|
---|
| 425 | retArr[0] = tmp;
|
---|
| 426 | }
|
---|
| 427 | } else {
|
---|
| 428 | #region may run parallel
|
---|
| 429 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 430 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 431 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 432 |
|
---|
| 433 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 434 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 435 | workItemLength = maxRuns / workItemCount;
|
---|
| 436 | } else {
|
---|
| 437 | workItemLength = maxRuns / 2;
|
---|
| 438 | workItemCount = 2;
|
---|
| 439 | }
|
---|
| 440 |
|
---|
| 441 | } else {
|
---|
| 442 | workItemLength = maxRuns;
|
---|
| 443 | workItemCount = 1;
|
---|
| 444 | }
|
---|
| 445 | Action<object> action = (data) => {
|
---|
| 446 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 447 | int from = range.Item1, to = range.Item2;
|
---|
| 448 | for (int c = from; c < to; c++) {
|
---|
| 449 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 450 | long posOut = ((long)c * incOut);
|
---|
| 451 | if (posOut > modOut)
|
---|
| 452 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 453 |
|
---|
| 454 | float tmp = 0;
|
---|
| 455 | int end = pos + dimLen * inc;
|
---|
| 456 | if (computeMean)
|
---|
| 457 | {
|
---|
| 458 | int cnt = 0;
|
---|
| 459 | for (int j = pos; j < end; j += inc)
|
---|
| 460 | {
|
---|
| 461 | if (!/*HC:*/float.IsNaN(aArray[j]))
|
---|
| 462 | {
|
---|
| 463 | tmp += aArray[j];
|
---|
| 464 | cnt++;
|
---|
| 465 | }
|
---|
| 466 | }
|
---|
| 467 | if (cnt == 0)
|
---|
| 468 | retArr[posOut] = float.NaN;
|
---|
| 469 | else
|
---|
| 470 | retArr[posOut] = tmp / cnt;
|
---|
| 471 | }
|
---|
| 472 | else
|
---|
| 473 | {
|
---|
| 474 |
|
---|
| 475 | for (int j = pos; j < end; j += inc)
|
---|
| 476 | {
|
---|
| 477 | if (!/*HC:*/float.IsNaN(aArray[j]))
|
---|
| 478 | tmp += aArray[j];
|
---|
| 479 | }
|
---|
| 480 | retArr[posOut] = tmp;
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 484 | };
|
---|
| 485 | for (; i < workItemCount - 1; i++) {
|
---|
| 486 | Interlocked.Increment(ref workerCount);
|
---|
| 487 |
|
---|
| 488 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 489 | }
|
---|
| 490 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 491 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 492 | #endregion
|
---|
| 493 | }
|
---|
| 494 | return array(retArr, newDims);
|
---|
| 495 | }
|
---|
| 496 | }
|
---|
| 497 | /// <summary>
|
---|
| 498 | /// Sum elements along first non singleton dimension ignoring NaN values
|
---|
| 499 | /// </summary>
|
---|
| 500 | /// <param name="A">Input array</param>
|
---|
| 501 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 502 | /// <returns>Sum of elements along specified of first non singleton dimension, ignoring nan values</returns>
|
---|
| 503 | /// <remarks><para>The array returned will have the same size as <paramref name="A"/>, with the specified or first non singleton dimension
|
---|
| 504 | /// reduced to the length 1. It will contain the sum of all elements along that dimension after removing NaN values respectively. </para>
|
---|
| 505 | /// <para>If A contains an all NaN vector along <paramref name="dim"/> ,
|
---|
| 506 | /// the resulting sum will be 0 - not NaN! This corresponds to the sum of an empty vector.</para></remarks>
|
---|
| 507 | public static ILRetArray<complex> nansum(ILInArray<complex> A, int dim = -1)
|
---|
| 508 | {
|
---|
| 509 | if (dim < 0)
|
---|
| 510 | dim = A.Size.WorkingDimension();
|
---|
| 511 | return nansum_internal(A, dim, false);
|
---|
| 512 | }
|
---|
| 513 |
|
---|
| 514 | /// <summary>
|
---|
| 515 | /// Depending on settings, calculate nansum or nanmean
|
---|
| 516 | /// </summary>
|
---|
| 517 | private static ILRetArray<complex> nansum_internal (ILInArray<complex> A, int dim, bool computeMean) {
|
---|
| 518 | using (ILScope.Enter(A)) {
|
---|
| 519 | if (dim >= A.Size.NumberOfDimensions)
|
---|
| 520 | return A.C;
|
---|
| 521 |
|
---|
| 522 | if (A.IsScalar) {
|
---|
| 523 | return array<complex>(new complex[1] { A.GetValue(0) }, 1, 1);
|
---|
| 524 | }
|
---|
| 525 |
|
---|
| 526 | if (A.S[dim] == 1) return A.C;
|
---|
| 527 |
|
---|
| 528 | int[] newDims = A.S.ToIntArray();
|
---|
| 529 | newDims[dim] = 1;
|
---|
| 530 | ILSize retDimension = new ILSize(newDims);
|
---|
| 531 |
|
---|
| 532 | if (A.IsEmpty)
|
---|
| 533 | return empty<complex>(retDimension);
|
---|
| 534 |
|
---|
| 535 | complex[] retArr = ILMemoryPool.Pool.New<complex>(retDimension.NumberOfElements);
|
---|
| 536 |
|
---|
| 537 | int inc = A.Size.SequentialIndexDistance(dim);
|
---|
| 538 | int dimLen = A.Size[dim];
|
---|
| 539 | int maxRuns = retDimension.NumberOfElements;
|
---|
| 540 | int modHelp = A.Size.NumberOfElements - 1;
|
---|
| 541 | int modOut = retDimension.NumberOfElements - 1;
|
---|
| 542 | int incOut = retDimension.SequentialIndexDistance(dim);
|
---|
| 543 | int numelA = A.S.NumberOfElements;
|
---|
| 544 |
|
---|
| 545 | complex[] aArray = A.GetArrayForRead();
|
---|
| 546 | if (maxRuns == 1) {
|
---|
| 547 |
|
---|
| 548 | complex tmp = 0;
|
---|
| 549 | if (computeMean)
|
---|
| 550 | {
|
---|
| 551 | int cnt = 0;
|
---|
| 552 | for (int j = 0; j < dimLen; j++)
|
---|
| 553 | {
|
---|
| 554 | if (!/*HC:*/complex.IsNaN(aArray[j]))
|
---|
| 555 | {
|
---|
| 556 | tmp += aArray[j];
|
---|
| 557 | cnt++;
|
---|
| 558 | }
|
---|
| 559 | }
|
---|
| 560 | if (cnt == 0)
|
---|
| 561 | retArr[0] = complex.NaN;
|
---|
| 562 | else
|
---|
| 563 | retArr[0] = tmp / cnt;
|
---|
| 564 | }
|
---|
| 565 | else
|
---|
| 566 | {
|
---|
| 567 | for (int j = 0; j < dimLen; j++)
|
---|
| 568 | {
|
---|
| 569 | if (!/*HC:*/complex.IsNaN(aArray[j]))
|
---|
| 570 | tmp += aArray[j];
|
---|
| 571 | }
|
---|
| 572 | retArr[0] = tmp;
|
---|
| 573 | }
|
---|
| 574 | } else {
|
---|
| 575 | #region may run parallel
|
---|
| 576 | int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1;
|
---|
| 577 | if (Settings.s_maxNumberThreads > 1 && maxRuns > 1
|
---|
| 578 | && numelA / 2 >= Settings.s_minParallelElement1Count) {
|
---|
| 579 |
|
---|
| 580 | if (maxRuns >= Settings.s_maxNumberThreads
|
---|
| 581 | && numelA / Settings.s_maxNumberThreads > Settings.s_minParallelElement1Count) {
|
---|
| 582 | workItemLength = maxRuns / workItemCount;
|
---|
| 583 | } else {
|
---|
| 584 | workItemLength = maxRuns / 2;
|
---|
| 585 | workItemCount = 2;
|
---|
| 586 | }
|
---|
| 587 |
|
---|
| 588 | } else {
|
---|
| 589 | workItemLength = maxRuns;
|
---|
| 590 | workItemCount = 1;
|
---|
| 591 | }
|
---|
| 592 | Action<object> action = (data) => {
|
---|
| 593 | Tuple<int, int> range = (Tuple<int, int>)data;
|
---|
| 594 | int from = range.Item1, to = range.Item2;
|
---|
| 595 | for (int c = from; c < to; c++) {
|
---|
| 596 | int pos = (int)(((long)dimLen * c * inc) % modHelp);
|
---|
| 597 | long posOut = ((long)c * incOut);
|
---|
| 598 | if (posOut > modOut)
|
---|
| 599 | posOut = ((posOut - 1) % modOut) + 1;
|
---|
| 600 |
|
---|
| 601 | complex tmp = 0;
|
---|
| 602 | int end = pos + dimLen * inc;
|
---|
| 603 | if (computeMean)
|
---|
| 604 | {
|
---|
| 605 | int cnt = 0;
|
---|
| 606 | for (int j = pos; j < end; j += inc)
|
---|
| 607 | {
|
---|
| 608 | if (!/*HC:*/complex.IsNaN(aArray[j]))
|
---|
| 609 | {
|
---|
| 610 | tmp += aArray[j];
|
---|
| 611 | cnt++;
|
---|
| 612 | }
|
---|
| 613 | }
|
---|
| 614 | if (cnt == 0)
|
---|
| 615 | retArr[posOut] = complex.NaN;
|
---|
| 616 | else
|
---|
| 617 | retArr[posOut] = tmp / cnt;
|
---|
| 618 | }
|
---|
| 619 | else
|
---|
| 620 | {
|
---|
| 621 |
|
---|
| 622 | for (int j = pos; j < end; j += inc)
|
---|
| 623 | {
|
---|
| 624 | if (!/*HC:*/complex.IsNaN(aArray[j]))
|
---|
| 625 | tmp += aArray[j];
|
---|
| 626 | }
|
---|
| 627 | retArr[posOut] = tmp;
|
---|
| 628 | }
|
---|
| 629 | }
|
---|
| 630 | System.Threading.Interlocked.Decrement(ref workerCount);
|
---|
| 631 | };
|
---|
| 632 | for (; i < workItemCount - 1; i++) {
|
---|
| 633 | Interlocked.Increment(ref workerCount);
|
---|
| 634 |
|
---|
| 635 | ILThreadPool.QueueUserWorkItem(i,action, Tuple.Create(i * workItemLength, (i + 1) * workItemLength));
|
---|
| 636 | }
|
---|
| 637 | action(Tuple.Create(i * workItemLength, maxRuns));
|
---|
| 638 | ILThreadPool.Wait4Workers(ref workerCount);
|
---|
| 639 | #endregion
|
---|
| 640 | }
|
---|
| 641 | return array(retArr, newDims);
|
---|
| 642 | }
|
---|
| 643 | }
|
---|
| 644 |
|
---|
| 645 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 646 | }
|
---|
| 647 | } |
---|