1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Text;
|
---|
43 | using ILNumerics;
|
---|
44 | using ILNumerics.Exceptions;
|
---|
45 | using ILNumerics.Storage;
|
---|
46 | using ILNumerics.Misc;
|
---|
47 |
|
---|
48 |
|
---|
49 |
|
---|
50 | namespace ILNumerics {
|
---|
51 |
|
---|
52 | public partial class ILMath {
|
---|
53 |
|
---|
54 | |
---|
55 | /// <summary>
|
---|
56 | /// Variance along dimension of A
|
---|
57 | /// </summary>
|
---|
58 | /// <param name="A">Input array A</param>
|
---|
59 | /// <param name="Weights">[Optional] Vector of scaling factors, same length as working dimension of A, default: no scaling</param>
|
---|
60 | /// <param name="biased">[Optional] true: apply biased normalization to result, default: false (non-biased)</param>
|
---|
61 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
62 | /// <returns>Variances</returns>
|
---|
63 | /// <remarks><para>On scalar A a scalar 0 of the same shape as A is returned.</para>
|
---|
64 | /// <para>On empty A an empty array is returned, having the dimension to operate along reduced to length 1.</para>
|
---|
65 | /// <para>The parameters <paramref name="Weights"/>, <paramref name="biased"/> and <paramref name="dim"/> are optional.
|
---|
66 | /// Ommiting either one will choose its respective default value.</para>
|
---|
67 | /// <para> The result for <paramref name="biased"/> = true is computed by the following formula:
|
---|
68 | /// <code>r = (A - mean(A));
|
---|
69 | /// var = sum(r * r) / A.D[dim];</code>
|
---|
70 | /// If <paramref name="biased"/> is false (default) the normalization is done with the length of the working dimension of A as follows:
|
---|
71 | /// <code>r = (A - mean(A));
|
---|
72 | /// var = sum(r * r) / (A.D[dim] - 1); </code>
|
---|
73 | /// If <paramref name="Weights"/> is given, the parameter <paramref name="biased"/> is ignored.</para>
|
---|
74 | /// <para>If <paramref name="Weights"/> is given, the normalization is applied to r as follows:
|
---|
75 | /// <code>w = w / sum(w);
|
---|
76 | /// r = A - sum(w * A);
|
---|
77 | /// var = sum(w * (r * r));
|
---|
78 | /// </code></para></remarks>
|
---|
79 | public static ILRetArray<double> var(ILInArray<double> A,
|
---|
80 | ILInArray<double> Weights = null,
|
---|
81 | bool biased = false, int dim = -1) {
|
---|
82 | using (ILScope.Enter(A, Weights)) {
|
---|
83 | if (isnull(A))
|
---|
84 | throw new ILArgumentException("input parameter A must not be null");
|
---|
85 | if (A.IsScalar) {
|
---|
86 | return zeros<double>(A.S);
|
---|
87 | }
|
---|
88 | if (dim == -1) {
|
---|
89 | dim = A.S.WorkingDimension();
|
---|
90 | if (dim < 0)
|
---|
91 | dim = 0;
|
---|
92 | }
|
---|
93 | if (A.IsEmpty) {
|
---|
94 | int[] dims = A.S.ToIntArray();
|
---|
95 | dims[dim] = 1;
|
---|
96 | return zeros<double>(dims);
|
---|
97 | }
|
---|
98 | int n = A.S[dim];
|
---|
99 | if (isnull(Weights)) {
|
---|
100 | // unweighted
|
---|
101 | ILArray<double> tmp = n;
|
---|
102 | if (!biased && n > 1) {
|
---|
103 | tmp.a = tmp - 1;
|
---|
104 | }
|
---|
105 | ILArray<double> tmpM = sum(A, dim) / n;
|
---|
106 | ILArray<double> AminTmpM = A - tmpM;
|
---|
107 | return sum(AminTmpM * AminTmpM, dim) / tmp;
|
---|
108 | } else {
|
---|
109 | // weighted
|
---|
110 | if (!Weights.IsVector || Weights.S.NumberOfElements != n) {
|
---|
111 | throw new ILArgumentException("Weights parameter must be a vector of the length of the working dimension of A");
|
---|
112 | }
|
---|
113 | if (any(Weights < 0)) {
|
---|
114 | throw new ILArgumentException("values of Weights parameter must all be positive");
|
---|
115 | }
|
---|
116 | ILArray<double> locWeights;
|
---|
117 | if (!A.IsMatrix) {
|
---|
118 | // vector expansion currently only works for vectors on matrices
|
---|
119 | ILArray<int> wdims = ones<int>(Math.Max(dim, ndims(A)));
|
---|
120 | wdims[dim] = Weights.Length;
|
---|
121 | locWeights = reshape(Weights, new ILSize(wdims)) / sumall(Weights);
|
---|
122 | int[] repDims = A.S.ToIntArray();
|
---|
123 | repDims[dim] = 1;
|
---|
124 | locWeights = repmat(locWeights, repDims);
|
---|
125 | }
|
---|
126 | ILArray<double> r = A - sum(Weights * A, dim);
|
---|
127 | return sum(Weights * (r * r), dim);
|
---|
128 | }
|
---|
129 | }
|
---|
130 | }
|
---|
131 | |
---|
132 | #region HYCALPER AUTO GENERATED CODE
|
---|
133 | |
---|
134 | /// <summary>
|
---|
135 | /// Variance along dimension of A
|
---|
136 | /// </summary>
|
---|
137 | /// <param name="A">Input array A</param>
|
---|
138 | /// <param name="Weights">[Optional] Vector of scaling factors, same length as working dimension of A, default: no scaling</param>
|
---|
139 | /// <param name="biased">[Optional] true: apply biased normalization to result, default: false (non-biased)</param>
|
---|
140 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
141 | /// <returns>Variances</returns>
|
---|
142 | /// <remarks><para>On scalar A a scalar 0 of the same shape as A is returned.</para>
|
---|
143 | /// <para>On empty A an empty array is returned, having the dimension to operate along reduced to length 1.</para>
|
---|
144 | /// <para>The parameters <paramref name="Weights"/>, <paramref name="biased"/> and <paramref name="dim"/> are optional.
|
---|
145 | /// Ommiting either one will choose its respective default value.</para>
|
---|
146 | /// <para> The result for <paramref name="biased"/> = true is computed by the following formula:
|
---|
147 | /// <code>r = (A - mean(A));
|
---|
148 | /// var = sum(r * r) / A.D[dim];</code>
|
---|
149 | /// If <paramref name="biased"/> is false (default) the normalization is done with the length of the working dimension of A as follows:
|
---|
150 | /// <code>r = (A - mean(A));
|
---|
151 | /// var = sum(r * r) / (A.D[dim] - 1); </code>
|
---|
152 | /// If <paramref name="Weights"/> is given, the parameter <paramref name="biased"/> is ignored.</para>
|
---|
153 | /// <para>If <paramref name="Weights"/> is given, the normalization is applied to r as follows:
|
---|
154 | /// <code>w = w / sum(w);
|
---|
155 | /// r = A - sum(w * A);
|
---|
156 | /// var = sum(w * (r * r));
|
---|
157 | /// </code></para></remarks>
|
---|
158 | public static ILRetArray<float> var(ILInArray<float> A,
|
---|
159 | ILInArray<float> Weights = null,
|
---|
160 | bool biased = false, int dim = -1) {
|
---|
161 | using (ILScope.Enter(A, Weights)) {
|
---|
162 | if (isnull(A))
|
---|
163 | throw new ILArgumentException("input parameter A must not be null");
|
---|
164 | if (A.IsScalar) {
|
---|
165 | return zeros<float>(A.S);
|
---|
166 | }
|
---|
167 | if (dim == -1) {
|
---|
168 | dim = A.S.WorkingDimension();
|
---|
169 | if (dim < 0)
|
---|
170 | dim = 0;
|
---|
171 | }
|
---|
172 | if (A.IsEmpty) {
|
---|
173 | int[] dims = A.S.ToIntArray();
|
---|
174 | dims[dim] = 1;
|
---|
175 | return zeros<float>(dims);
|
---|
176 | }
|
---|
177 | int n = A.S[dim];
|
---|
178 | if (isnull(Weights)) {
|
---|
179 | // unweighted
|
---|
180 | ILArray<float> tmp = n;
|
---|
181 | if (!biased && n > 1) {
|
---|
182 | tmp.a = tmp - 1;
|
---|
183 | }
|
---|
184 | ILArray<float> tmpM = sum(A, dim) / n;
|
---|
185 | ILArray<float> AminTmpM = A - tmpM;
|
---|
186 | return sum(AminTmpM * AminTmpM, dim) / tmp;
|
---|
187 | } else {
|
---|
188 | // weighted
|
---|
189 | if (!Weights.IsVector || Weights.S.NumberOfElements != n) {
|
---|
190 | throw new ILArgumentException("Weights parameter must be a vector of the length of the working dimension of A");
|
---|
191 | }
|
---|
192 | if (any(Weights < 0)) {
|
---|
193 | throw new ILArgumentException("values of Weights parameter must all be positive");
|
---|
194 | }
|
---|
195 | ILArray<float> locWeights;
|
---|
196 | if (!A.IsMatrix) {
|
---|
197 | // vector expansion currently only works for vectors on matrices
|
---|
198 | ILArray<int> wdims = ones<int>(Math.Max(dim, ndims(A)));
|
---|
199 | wdims[dim] = Weights.Length;
|
---|
200 | locWeights = reshape(Weights, new ILSize(wdims)) / sumall(Weights);
|
---|
201 | int[] repDims = A.S.ToIntArray();
|
---|
202 | repDims[dim] = 1;
|
---|
203 | locWeights = repmat(locWeights, repDims);
|
---|
204 | }
|
---|
205 | ILArray<float> r = A - sum(Weights * A, dim);
|
---|
206 | return sum(Weights * (r * r), dim);
|
---|
207 | }
|
---|
208 | }
|
---|
209 | }
|
---|
210 |
|
---|
211 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
212 | }
|
---|
213 | } |
---|