[9102] | 1 | ///
|
---|
| 2 | /// This file is part of ILNumerics Community Edition.
|
---|
| 3 | ///
|
---|
| 4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
| 5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
| 6 | ///
|
---|
| 7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
| 8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
| 9 | /// the Free Software Foundation.
|
---|
| 10 | ///
|
---|
| 11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
| 12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | /// GNU General Public License for more details.
|
---|
| 15 | ///
|
---|
| 16 | /// You should have received a copy of the GNU General Public License
|
---|
| 17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
| 18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | ///
|
---|
| 20 | /// In addition this software uses the following components and/or licenses:
|
---|
| 21 | ///
|
---|
| 22 | /// =================================================================================
|
---|
| 23 | /// The Open Toolkit Library License
|
---|
| 24 | ///
|
---|
| 25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
| 26 | ///
|
---|
| 27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
| 28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
| 29 | /// in the Software without restriction, including without limitation the rights to
|
---|
| 30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
| 32 | /// so, subject to the following conditions:
|
---|
| 33 | ///
|
---|
| 34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
| 35 | /// copies or substantial portions of the Software.
|
---|
| 36 | ///
|
---|
| 37 | /// =================================================================================
|
---|
| 38 | ///
|
---|
| 39 |
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Text;
|
---|
| 43 | using ILNumerics;
|
---|
| 44 | using ILNumerics.Exceptions;
|
---|
| 45 | using ILNumerics.Storage;
|
---|
| 46 | using ILNumerics.Misc;
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 |
|
---|
| 50 | namespace ILNumerics {
|
---|
| 51 |
|
---|
| 52 | public partial class ILMath {
|
---|
| 53 |
|
---|
| 54 | |
---|
| 55 | /// <summary>
|
---|
| 56 | /// Variance along dimension of A
|
---|
| 57 | /// </summary>
|
---|
| 58 | /// <param name="A">Input array A</param>
|
---|
| 59 | /// <param name="Weights">[Optional] Vector of scaling factors, same length as working dimension of A, default: no scaling</param>
|
---|
| 60 | /// <param name="biased">[Optional] true: apply biased normalization to result, default: false (non-biased)</param>
|
---|
| 61 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 62 | /// <returns>Variances</returns>
|
---|
| 63 | /// <remarks><para>On scalar A a scalar 0 of the same shape as A is returned.</para>
|
---|
| 64 | /// <para>On empty A an empty array is returned, having the dimension to operate along reduced to length 1.</para>
|
---|
| 65 | /// <para>The parameters <paramref name="Weights"/>, <paramref name="biased"/> and <paramref name="dim"/> are optional.
|
---|
| 66 | /// Ommiting either one will choose its respective default value.</para>
|
---|
| 67 | /// <para> The result for <paramref name="biased"/> = true is computed by the following formula:
|
---|
| 68 | /// <code>r = (A - mean(A));
|
---|
| 69 | /// var = sum(r * r) / A.D[dim];</code>
|
---|
| 70 | /// If <paramref name="biased"/> is false (default) the normalization is done with the length of the working dimension of A as follows:
|
---|
| 71 | /// <code>r = (A - mean(A));
|
---|
| 72 | /// var = sum(r * r) / (A.D[dim] - 1); </code>
|
---|
| 73 | /// If <paramref name="Weights"/> is given, the parameter <paramref name="biased"/> is ignored.</para>
|
---|
| 74 | /// <para>If <paramref name="Weights"/> is given, the normalization is applied to r as follows:
|
---|
| 75 | /// <code>w = w / sum(w);
|
---|
| 76 | /// r = A - sum(w * A);
|
---|
| 77 | /// var = sum(w * (r * r));
|
---|
| 78 | /// </code></para></remarks>
|
---|
| 79 | public static ILRetArray<double> var(ILInArray<double> A,
|
---|
| 80 | ILInArray<double> Weights = null,
|
---|
| 81 | bool biased = false, int dim = -1) {
|
---|
| 82 | using (ILScope.Enter(A, Weights)) {
|
---|
| 83 | if (isnull(A))
|
---|
| 84 | throw new ILArgumentException("input parameter A must not be null");
|
---|
| 85 | if (A.IsScalar) {
|
---|
| 86 | return zeros<double>(A.S);
|
---|
| 87 | }
|
---|
| 88 | if (dim == -1) {
|
---|
| 89 | dim = A.S.WorkingDimension();
|
---|
| 90 | if (dim < 0)
|
---|
| 91 | dim = 0;
|
---|
| 92 | }
|
---|
| 93 | if (A.IsEmpty) {
|
---|
| 94 | int[] dims = A.S.ToIntArray();
|
---|
| 95 | dims[dim] = 1;
|
---|
| 96 | return zeros<double>(dims);
|
---|
| 97 | }
|
---|
| 98 | int n = A.S[dim];
|
---|
| 99 | if (isnull(Weights)) {
|
---|
| 100 | // unweighted
|
---|
| 101 | ILArray<double> tmp = n;
|
---|
| 102 | if (!biased && n > 1) {
|
---|
| 103 | tmp.a = tmp - 1;
|
---|
| 104 | }
|
---|
| 105 | ILArray<double> tmpM = sum(A, dim) / n;
|
---|
| 106 | ILArray<double> AminTmpM = A - tmpM;
|
---|
| 107 | return sum(AminTmpM * AminTmpM, dim) / tmp;
|
---|
| 108 | } else {
|
---|
| 109 | // weighted
|
---|
| 110 | if (!Weights.IsVector || Weights.S.NumberOfElements != n) {
|
---|
| 111 | throw new ILArgumentException("Weights parameter must be a vector of the length of the working dimension of A");
|
---|
| 112 | }
|
---|
| 113 | if (any(Weights < 0)) {
|
---|
| 114 | throw new ILArgumentException("values of Weights parameter must all be positive");
|
---|
| 115 | }
|
---|
| 116 | ILArray<double> locWeights;
|
---|
| 117 | if (!A.IsMatrix) {
|
---|
| 118 | // vector expansion currently only works for vectors on matrices
|
---|
| 119 | ILArray<int> wdims = ones<int>(Math.Max(dim, ndims(A)));
|
---|
| 120 | wdims[dim] = Weights.Length;
|
---|
| 121 | locWeights = reshape(Weights, new ILSize(wdims)) / sumall(Weights);
|
---|
| 122 | int[] repDims = A.S.ToIntArray();
|
---|
| 123 | repDims[dim] = 1;
|
---|
| 124 | locWeights = repmat(locWeights, repDims);
|
---|
| 125 | }
|
---|
| 126 | ILArray<double> r = A - sum(Weights * A, dim);
|
---|
| 127 | return sum(Weights * (r * r), dim);
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 | }
|
---|
| 131 | |
---|
| 132 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 133 | |
---|
| 134 | /// <summary>
|
---|
| 135 | /// Variance along dimension of A
|
---|
| 136 | /// </summary>
|
---|
| 137 | /// <param name="A">Input array A</param>
|
---|
| 138 | /// <param name="Weights">[Optional] Vector of scaling factors, same length as working dimension of A, default: no scaling</param>
|
---|
| 139 | /// <param name="biased">[Optional] true: apply biased normalization to result, default: false (non-biased)</param>
|
---|
| 140 | /// <param name="dim">[Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).</param>
|
---|
| 141 | /// <returns>Variances</returns>
|
---|
| 142 | /// <remarks><para>On scalar A a scalar 0 of the same shape as A is returned.</para>
|
---|
| 143 | /// <para>On empty A an empty array is returned, having the dimension to operate along reduced to length 1.</para>
|
---|
| 144 | /// <para>The parameters <paramref name="Weights"/>, <paramref name="biased"/> and <paramref name="dim"/> are optional.
|
---|
| 145 | /// Ommiting either one will choose its respective default value.</para>
|
---|
| 146 | /// <para> The result for <paramref name="biased"/> = true is computed by the following formula:
|
---|
| 147 | /// <code>r = (A - mean(A));
|
---|
| 148 | /// var = sum(r * r) / A.D[dim];</code>
|
---|
| 149 | /// If <paramref name="biased"/> is false (default) the normalization is done with the length of the working dimension of A as follows:
|
---|
| 150 | /// <code>r = (A - mean(A));
|
---|
| 151 | /// var = sum(r * r) / (A.D[dim] - 1); </code>
|
---|
| 152 | /// If <paramref name="Weights"/> is given, the parameter <paramref name="biased"/> is ignored.</para>
|
---|
| 153 | /// <para>If <paramref name="Weights"/> is given, the normalization is applied to r as follows:
|
---|
| 154 | /// <code>w = w / sum(w);
|
---|
| 155 | /// r = A - sum(w * A);
|
---|
| 156 | /// var = sum(w * (r * r));
|
---|
| 157 | /// </code></para></remarks>
|
---|
| 158 | public static ILRetArray<float> var(ILInArray<float> A,
|
---|
| 159 | ILInArray<float> Weights = null,
|
---|
| 160 | bool biased = false, int dim = -1) {
|
---|
| 161 | using (ILScope.Enter(A, Weights)) {
|
---|
| 162 | if (isnull(A))
|
---|
| 163 | throw new ILArgumentException("input parameter A must not be null");
|
---|
| 164 | if (A.IsScalar) {
|
---|
| 165 | return zeros<float>(A.S);
|
---|
| 166 | }
|
---|
| 167 | if (dim == -1) {
|
---|
| 168 | dim = A.S.WorkingDimension();
|
---|
| 169 | if (dim < 0)
|
---|
| 170 | dim = 0;
|
---|
| 171 | }
|
---|
| 172 | if (A.IsEmpty) {
|
---|
| 173 | int[] dims = A.S.ToIntArray();
|
---|
| 174 | dims[dim] = 1;
|
---|
| 175 | return zeros<float>(dims);
|
---|
| 176 | }
|
---|
| 177 | int n = A.S[dim];
|
---|
| 178 | if (isnull(Weights)) {
|
---|
| 179 | // unweighted
|
---|
| 180 | ILArray<float> tmp = n;
|
---|
| 181 | if (!biased && n > 1) {
|
---|
| 182 | tmp.a = tmp - 1;
|
---|
| 183 | }
|
---|
| 184 | ILArray<float> tmpM = sum(A, dim) / n;
|
---|
| 185 | ILArray<float> AminTmpM = A - tmpM;
|
---|
| 186 | return sum(AminTmpM * AminTmpM, dim) / tmp;
|
---|
| 187 | } else {
|
---|
| 188 | // weighted
|
---|
| 189 | if (!Weights.IsVector || Weights.S.NumberOfElements != n) {
|
---|
| 190 | throw new ILArgumentException("Weights parameter must be a vector of the length of the working dimension of A");
|
---|
| 191 | }
|
---|
| 192 | if (any(Weights < 0)) {
|
---|
| 193 | throw new ILArgumentException("values of Weights parameter must all be positive");
|
---|
| 194 | }
|
---|
| 195 | ILArray<float> locWeights;
|
---|
| 196 | if (!A.IsMatrix) {
|
---|
| 197 | // vector expansion currently only works for vectors on matrices
|
---|
| 198 | ILArray<int> wdims = ones<int>(Math.Max(dim, ndims(A)));
|
---|
| 199 | wdims[dim] = Weights.Length;
|
---|
| 200 | locWeights = reshape(Weights, new ILSize(wdims)) / sumall(Weights);
|
---|
| 201 | int[] repDims = A.S.ToIntArray();
|
---|
| 202 | repDims[dim] = 1;
|
---|
| 203 | locWeights = repmat(locWeights, repDims);
|
---|
| 204 | }
|
---|
| 205 | ILArray<float> r = A - sum(Weights * A, dim);
|
---|
| 206 | return sum(Weights * (r * r), dim);
|
---|
| 207 | }
|
---|
| 208 | }
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 212 | }
|
---|
| 213 | } |
---|