Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/ILNumerics.2.14.4735.573/Functions/builtin/std.cs @ 9407

Last change on this file since 9407 was 9102, checked in by gkronber, 12 years ago

#1967: ILNumerics source for experimentation

File size: 5.5 KB
Line 
1///
2///    This file is part of ILNumerics Community Edition.
3///
4///    ILNumerics Community Edition - high performance computing for applications.
5///    Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
6///
7///    ILNumerics Community Edition is free software: you can redistribute it and/or modify
8///    it under the terms of the GNU General Public License version 3 as published by
9///    the Free Software Foundation.
10///
11///    ILNumerics Community Edition is distributed in the hope that it will be useful,
12///    but WITHOUT ANY WARRANTY; without even the implied warranty of
13///    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14///    GNU General Public License for more details.
15///
16///    You should have received a copy of the GNU General Public License
17///    along with ILNumerics Community Edition. See the file License.txt in the root
18///    of your distribution package. If not, see <http://www.gnu.org/licenses/>.
19///
20///    In addition this software uses the following components and/or licenses:
21///
22///    =================================================================================
23///    The Open Toolkit Library License
24///   
25///    Copyright (c) 2006 - 2009 the Open Toolkit library.
26///   
27///    Permission is hereby granted, free of charge, to any person obtaining a copy
28///    of this software and associated documentation files (the "Software"), to deal
29///    in the Software without restriction, including without limitation the rights to
30///    use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
31///    the Software, and to permit persons to whom the Software is furnished to do
32///    so, subject to the following conditions:
33///
34///    The above copyright notice and this permission notice shall be included in all
35///    copies or substantial portions of the Software.
36///
37///    =================================================================================
38///   
39
40using System;
41using System.Collections.Generic;
42using System.Text;
43using ILNumerics;
44using ILNumerics.Exceptions;
45using ILNumerics.Storage;
46using ILNumerics.Misc;
47
48
49
50namespace ILNumerics {
51
52    public partial class ILMath {
53
54
55        /// <summary>
56        /// Standard deviation for values in A
57        /// </summary>
58        /// <param name="A">Input array</param>
59        /// <param name="Weights">Vector of scaling factors, same length as working dimension of A, default: no scaling</param>
60        /// <param name="biased">[Optional] true: apply biased normalization to result, default: false (non-biased)</param>
61        /// <param name="dim">[Optional] Dimension index of A to operate along, default: first non singleton dimension</param>
62        /// <returns>Variances</returns>
63        /// <remarks><para>On scalar A a scalar 0 of the same shape as A is returned.</para>
64        /// <para>On empty A an empty array is returned, having the dimension to operate along reduced to length 1.</para>
65        /// <para>The parameters <paramref name="Weights"/>, <paramref name="biased"/> and <paramref name="dim"/> are optional.
66        /// Ommiting either one will choose its respective default value.</para>
67        /// <para>The standard deviation is computed by the formula
68        /// <c>std = sqrt(var(A,...))</c>. For further details on given parameters, see
69        /// <see cref="M:ILNumerics.ILMath.var(ILNumerics.ILInArray{T},ILNumerics.ILInArray{T},bool,false);"/>.</para>
70        /// </remarks>
71        public static ILRetArray<double> std(ILInArray<double> A,
72                                                            ILInArray<double> Weights = null,
73                                                            bool biased = false, int dim = -1) {
74            return sqrt(var(A,Weights,biased,dim));
75        }
76
77#region HYCALPER AUTO GENERATED CODE
78
79        /// <summary>
80        /// Standard deviation for values in A
81        /// </summary>
82        /// <param name="A">Input array</param>
83        /// <param name="Weights">Vector of scaling factors, same length as working dimension of A, default: no scaling</param>
84        /// <param name="biased">[Optional] true: apply biased normalization to result, default: false (non-biased)</param>
85        /// <param name="dim">[Optional] Dimension index of A to operate along, default: first non singleton dimension</param>
86        /// <returns>Variances</returns>
87        /// <remarks><para>On scalar A a scalar 0 of the same shape as A is returned.</para>
88        /// <para>On empty A an empty array is returned, having the dimension to operate along reduced to length 1.</para>
89        /// <para>The parameters <paramref name="Weights"/>, <paramref name="biased"/> and <paramref name="dim"/> are optional.
90        /// Ommiting either one will choose its respective default value.</para>
91        /// <para>The standard deviation is computed by the formula
92        /// <c>std = sqrt(var(A,...))</c>. For further details on given parameters, see
93        /// <see cref="M:ILNumerics.ILMath.var(ILNumerics.ILInArray{T},ILNumerics.ILInArray{T},bool,false);"/>.</para>
94        /// </remarks>
95        public static ILRetArray<float> std(ILInArray<float> A,
96                                                            ILInArray<float> Weights = null,
97                                                            bool biased = false, int dim = -1) {
98            return sqrt(var(A,Weights,biased,dim));
99        }
100
101#endregion HYCALPER AUTO GENERATED CODE
102   }
103}
Note: See TracBrowser for help on using the repository browser.