1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Text;
|
---|
43 | using ILNumerics.Algorithms;
|
---|
44 | using ILNumerics.Exceptions;
|
---|
45 | using ILNumerics.Data;
|
---|
46 | using ILNumerics.Misc;
|
---|
47 |
|
---|
48 |
|
---|
49 | namespace ILNumerics {
|
---|
50 | public partial class ILMath {
|
---|
51 |
|
---|
52 | |
---|
53 | /// <summary>
|
---|
54 | /// Sort data in A along first non singleton dimension
|
---|
55 | /// </summary>
|
---|
56 | /// <param name="A">Input array, n-dimensional</param>
|
---|
57 | /// <returns>Sorted array of the same size as A</returns>
|
---|
58 | /// <remarks>The data in A will be sorted in ascending order using a non-recursive quick sort algorithm.
|
---|
59 | /// Elements along the columns of A will get sorted independently from each other. A is not altered.
|
---|
60 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
61 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
62 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
63 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
64 | /// </remarks>
|
---|
65 | public static ILRetArray< double > sort (ILInArray< double > A) {
|
---|
66 | using (ILScope.Enter(A)) {
|
---|
67 | int fnsd = A.Size.WorkingDimension();
|
---|
68 | if (fnsd < 0) return A.C;
|
---|
69 | return sort(A, fnsd, false);
|
---|
70 | }
|
---|
71 | }
|
---|
72 | /// <summary>
|
---|
73 | /// Sort data in A along first non singleton dimension
|
---|
74 | /// </summary>
|
---|
75 | /// <param name="A">Input array, n-dimensional</param>
|
---|
76 | /// <param name="descending">Determine the direction of sorting (ascending/ descending)</param>
|
---|
77 | /// <returns>Sorted array of the same size as A</returns>
|
---|
78 | /// <remarks>The data in A will be sorted using the quick sort algorithm. Data
|
---|
79 | /// along the first non singleton dimension will get sorted independently from data
|
---|
80 | /// in the next row/column.
|
---|
81 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
82 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
83 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
84 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
85 | /// </remarks>
|
---|
86 | public static ILRetArray< double > sort (ILInArray< double > A, bool descending) {
|
---|
87 | using (ILScope.Enter(A)) {
|
---|
88 | int fnsd = A.Size.WorkingDimension();
|
---|
89 | if (fnsd < 0) return A.C;
|
---|
90 | return sort(A, fnsd, descending);
|
---|
91 | }
|
---|
92 | }
|
---|
93 | /// <summary>
|
---|
94 | /// Sort data in A along dimension 'dim'
|
---|
95 | /// </summary>
|
---|
96 | /// <param name="A">Input array, n-dimensional</param>
|
---|
97 | /// <param name="descending">Direction of sorting</param>
|
---|
98 | /// <param name="dim">Dimension index to sort along</param>
|
---|
99 | /// <returns>Sorted array of the same size as A</returns>
|
---|
100 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
101 | /// algorithm.
|
---|
102 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
103 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
104 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
105 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
106 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
107 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
108 | /// </remarks>
|
---|
109 | public static ILRetArray< double > sort (ILInArray< double > A, int dim, bool descending) {
|
---|
110 | if (object.Equals (A,null))
|
---|
111 | throw new Exception("parameter A must not be null");
|
---|
112 | using (ILScope.Enter(A)) {
|
---|
113 | if (dim < 0) // || dim >= A.Dimensions.NumberOfDimensions)
|
---|
114 | throw new ILArgumentException("invalid dimension argument");
|
---|
115 | if (dim >= A.Size.NumberOfDimensions)
|
---|
116 | return A.C;
|
---|
117 | // early exit: scalar/ empty
|
---|
118 | if (A.IsEmpty || A.IsScalar)
|
---|
119 | return A.C;
|
---|
120 | ILArray< double> ret = A.C; // new ILArray<double>(new Storage.ILDenseStorage<double>(ILMemoryPool.Pool.New<double>(A.Dimensions.NumberOfElements), A.Dimensions));
|
---|
121 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
122 | int dimLen = A.Size[dim];
|
---|
123 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
124 | int posInArr = 0;
|
---|
125 | if (descending) {
|
---|
126 | if (maxRuns == 1) {
|
---|
127 | ILQuickSort.QuickSortDescMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
128 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
129 |
|
---|
130 | double[] retArr = ret.GetArrayForWrite();
|
---|
131 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
132 | (c) => {
|
---|
133 | int pos = (int)(((long)dimLen * c * inc) % (A.Size.NumberOfElements - 1));
|
---|
134 | ILQuickSort.QuickSortDescST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
135 | });
|
---|
136 | } else {
|
---|
137 |
|
---|
138 | double[] retArr = ret.GetArrayForWrite();
|
---|
139 | for (int c = 0; c < maxRuns; c++) {
|
---|
140 | if (posInArr >= A.Size.NumberOfElements)
|
---|
141 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
142 | ILQuickSort.QuickSortDescST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
143 | posInArr += dimLen * inc;
|
---|
144 | }
|
---|
145 | }
|
---|
146 | } else {
|
---|
147 | // ascending
|
---|
148 | if (maxRuns == 1) {
|
---|
149 | ILQuickSort.QuickSortAscMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
150 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
151 |
|
---|
152 | double[] retArr = ret.GetArrayForWrite();
|
---|
153 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
154 | (c) => {
|
---|
155 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
156 | ILQuickSort.QuickSortAscST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
157 | });
|
---|
158 | } else {
|
---|
159 |
|
---|
160 | double[] retArr = ret.GetArrayForWrite();
|
---|
161 | for (int c = 0; c < maxRuns; c++) {
|
---|
162 | if (posInArr >= A.Size.NumberOfElements)
|
---|
163 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
164 | ILQuickSort.QuickSortAscST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
165 | posInArr += dimLen * inc;
|
---|
166 | }
|
---|
167 | }
|
---|
168 | }
|
---|
169 | //if (descending) {
|
---|
170 | // for (int c = 0; c < maxRuns; c++) {
|
---|
171 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
172 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
173 | // ILQuickSort.QuickSortDescSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
174 | // posInArr += dimLen * inc;
|
---|
175 | // }
|
---|
176 | //} else {
|
---|
177 | // // ascending
|
---|
178 | // for (int c = 0; c < maxRuns; c++) {
|
---|
179 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
180 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
181 | // ILQuickSort.QuickSortAscSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
182 | // posInArr += dimLen * inc;
|
---|
183 | // }
|
---|
184 | //}
|
---|
185 | return ret;
|
---|
186 | }
|
---|
187 | }
|
---|
188 | /// <summary>
|
---|
189 | /// Sort data in A along dimension 'dim'
|
---|
190 | /// </summary>
|
---|
191 | /// <param name="A">Input array, n-dimensional</param>
|
---|
192 | /// <param name="descending">Direction of sorting</param>
|
---|
193 | /// <param name="dim">Dimension index to sort along</param>
|
---|
194 | /// <param name="Indices">[Output] Returns permutation matrix</param>
|
---|
195 | /// <returns>Sorted array of the same size as A</returns>
|
---|
196 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
197 | /// algorithm.
|
---|
198 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
199 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
200 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
201 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
202 | /// <para>This overload also returns an array 'Indices' which will hold the indices into the original
|
---|
203 | /// elements <b>after sorting</b>. Elements of 'Indices' are of type double.</para>
|
---|
204 | /// <example><code>ILArray<double> A = ILMath.rand(1,5);
|
---|
205 | /// //A:
|
---|
206 | /// // 0.4324 0.9231 0.1231 0.1423 0.2991
|
---|
207 | /// ILArray<double> I;
|
---|
208 | /// ILArray<double> R = ILMath.sort(A, out I, 1, false);
|
---|
209 | /// //R:
|
---|
210 | /// // 0.1231 0.1423 0.2991 0.4324 0.9231
|
---|
211 | /// //I:
|
---|
212 | /// // 2 3 4 0 1
|
---|
213 | /// </code>
|
---|
214 | /// </example>
|
---|
215 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
216 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
217 | /// </remarks>
|
---|
218 | public static ILRetArray< double> sort( ILInArray< double> A, ILOutArray<double> Indices = null, int dim = -1, bool descending = false ) {
|
---|
219 | using (ILScope.Enter(A)) {
|
---|
220 | if (object.Equals(A, null))
|
---|
221 | throw new Exception("parameter A must not be null");
|
---|
222 | if (object.Equals(Indices, null)) {
|
---|
223 | return sort(A,dim,descending);
|
---|
224 | }
|
---|
225 | if (dim >= A.Size.NumberOfDimensions)
|
---|
226 | throw new ILArgumentException("invalid dimension argument");
|
---|
227 | // early exit: scalar/ empty
|
---|
228 | if (A.IsEmpty) {
|
---|
229 | Indices.a = empty<double>(ILSize.Empty00);
|
---|
230 | return empty< double>(ILSize.Empty00);
|
---|
231 | }
|
---|
232 | if (A.IsScalar) {
|
---|
233 | Indices.a = 0;
|
---|
234 | return A.C;
|
---|
235 | }
|
---|
236 | if (dim < 0) {
|
---|
237 | dim = A.S.WorkingDimension();
|
---|
238 | }
|
---|
239 | int[] tmpDims = A.Size.ToIntArray();
|
---|
240 | for (int i = 0; i < A.Size.NumberOfDimensions; i++) {
|
---|
241 | if (i == dim)
|
---|
242 | tmpDims[i] = A.Size[dim];
|
---|
243 | else
|
---|
244 | tmpDims[i] = 1;
|
---|
245 | }
|
---|
246 | //if (Indices.IsEmpty || !Indices.D.IsSameSize(A.D)) {
|
---|
247 | Indices.a = reshape(counter(0.0, 1.0, 1, A.Size[dim]), tmpDims);
|
---|
248 | tmpDims = A.Size.ToIntArray();
|
---|
249 | tmpDims[dim] = 1;
|
---|
250 | Indices.a = repmat(Indices, tmpDims);
|
---|
251 | //}
|
---|
252 | ILArray<double> ret = A.C;
|
---|
253 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
254 | int dimLen = A.Size[dim];
|
---|
255 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
256 | int posInArr = 0;
|
---|
257 | if (descending) {
|
---|
258 | if (maxRuns == 1) {
|
---|
259 | ILQuickSort.QuickSortDescIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
260 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
261 | double [] retArr = ret.GetArrayForWrite();
|
---|
262 | double[] indArr = Indices.GetArrayForRead();
|
---|
263 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
264 | (c) => {
|
---|
265 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements-1);
|
---|
266 | ILQuickSort.QuickSortDescIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
267 | });
|
---|
268 | } else {
|
---|
269 | for (int c = 0; c < maxRuns; c++) {
|
---|
270 | if (posInArr >= A.Size.NumberOfElements)
|
---|
271 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
272 | ILQuickSort.QuickSortDescIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
273 | posInArr += dimLen * inc;
|
---|
274 | }
|
---|
275 | }
|
---|
276 | } else {
|
---|
277 | // ascending
|
---|
278 | if (maxRuns == 1) {
|
---|
279 | ILQuickSort.QuickSortAscIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
280 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
281 |
|
---|
282 | double[] retArr = ret.GetArrayForWrite();
|
---|
283 | double[] indArr = Indices.GetArrayForRead();
|
---|
284 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
285 | (c) => {
|
---|
286 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
287 | ILQuickSort.QuickSortAscIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
288 | });
|
---|
289 | } else {
|
---|
290 | for (int c = 0; c < maxRuns; c++) {
|
---|
291 | if (posInArr >= A.Size.NumberOfElements)
|
---|
292 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
293 | ILQuickSort.QuickSortAscIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
294 | posInArr += dimLen * inc;
|
---|
295 | }
|
---|
296 | }
|
---|
297 | }
|
---|
298 | return ret;
|
---|
299 | }
|
---|
300 | }
|
---|
301 | |
---|
302 | #region HYCALPER AUTO GENERATED CODE
|
---|
303 | |
---|
304 | /// <summary>
|
---|
305 | /// Sort data in A along first non singleton dimension
|
---|
306 | /// </summary>
|
---|
307 | /// <param name="A">Input array, n-dimensional</param>
|
---|
308 | /// <returns>Sorted array of the same size as A</returns>
|
---|
309 | /// <remarks>The data in A will be sorted in ascending order using a non-recursive quick sort algorithm.
|
---|
310 | /// Elements along the columns of A will get sorted independently from each other. A is not altered.
|
---|
311 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
312 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
313 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
314 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
315 | /// </remarks>
|
---|
316 | public static ILRetArray< Int64 > sort (ILInArray< Int64 > A) {
|
---|
317 | using (ILScope.Enter(A)) {
|
---|
318 | int fnsd = A.Size.WorkingDimension();
|
---|
319 | if (fnsd < 0) return A.C;
|
---|
320 | return sort(A, fnsd, false);
|
---|
321 | }
|
---|
322 | }
|
---|
323 | /// <summary>
|
---|
324 | /// Sort data in A along first non singleton dimension
|
---|
325 | /// </summary>
|
---|
326 | /// <param name="A">Input array, n-dimensional</param>
|
---|
327 | /// <param name="descending">Determine the direction of sorting (ascending/ descending)</param>
|
---|
328 | /// <returns>Sorted array of the same size as A</returns>
|
---|
329 | /// <remarks>The data in A will be sorted using the quick sort algorithm. Data
|
---|
330 | /// along the first non singleton dimension will get sorted independently from data
|
---|
331 | /// in the next row/column.
|
---|
332 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
333 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
334 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
335 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
336 | /// </remarks>
|
---|
337 | public static ILRetArray< Int64 > sort (ILInArray< Int64 > A, bool descending) {
|
---|
338 | using (ILScope.Enter(A)) {
|
---|
339 | int fnsd = A.Size.WorkingDimension();
|
---|
340 | if (fnsd < 0) return A.C;
|
---|
341 | return sort(A, fnsd, descending);
|
---|
342 | }
|
---|
343 | }
|
---|
344 | /// <summary>
|
---|
345 | /// Sort data in A along dimension 'dim'
|
---|
346 | /// </summary>
|
---|
347 | /// <param name="A">Input array, n-dimensional</param>
|
---|
348 | /// <param name="descending">Direction of sorting</param>
|
---|
349 | /// <param name="dim">Dimension index to sort along</param>
|
---|
350 | /// <returns>Sorted array of the same size as A</returns>
|
---|
351 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
352 | /// algorithm.
|
---|
353 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
354 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
355 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
356 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
357 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
358 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
359 | /// </remarks>
|
---|
360 | public static ILRetArray< Int64 > sort (ILInArray< Int64 > A, int dim, bool descending) {
|
---|
361 | if (object.Equals (A,null))
|
---|
362 | throw new Exception("parameter A must not be null");
|
---|
363 | using (ILScope.Enter(A)) {
|
---|
364 | if (dim < 0) // || dim >= A.Dimensions.NumberOfDimensions)
|
---|
365 | throw new ILArgumentException("invalid dimension argument");
|
---|
366 | if (dim >= A.Size.NumberOfDimensions)
|
---|
367 | return A.C;
|
---|
368 | // early exit: scalar/ empty
|
---|
369 | if (A.IsEmpty || A.IsScalar)
|
---|
370 | return A.C;
|
---|
371 | ILArray< Int64> ret = A.C; // new ILArray<double>(new Storage.ILDenseStorage<double>(ILMemoryPool.Pool.New<double>(A.Dimensions.NumberOfElements), A.Dimensions));
|
---|
372 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
373 | int dimLen = A.Size[dim];
|
---|
374 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
375 | int posInArr = 0;
|
---|
376 | if (descending) {
|
---|
377 | if (maxRuns == 1) {
|
---|
378 | ILQuickSort.QuickSortDescMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
379 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
380 |
|
---|
381 | Int64[] retArr = ret.GetArrayForWrite();
|
---|
382 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
383 | (c) => {
|
---|
384 | int pos = (int)(((long)dimLen * c * inc) % (A.Size.NumberOfElements - 1));
|
---|
385 | ILQuickSort.QuickSortDescST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
386 | });
|
---|
387 | } else {
|
---|
388 |
|
---|
389 | Int64[] retArr = ret.GetArrayForWrite();
|
---|
390 | for (int c = 0; c < maxRuns; c++) {
|
---|
391 | if (posInArr >= A.Size.NumberOfElements)
|
---|
392 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
393 | ILQuickSort.QuickSortDescST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
394 | posInArr += dimLen * inc;
|
---|
395 | }
|
---|
396 | }
|
---|
397 | } else {
|
---|
398 | // ascending
|
---|
399 | if (maxRuns == 1) {
|
---|
400 | ILQuickSort.QuickSortAscMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
401 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
402 |
|
---|
403 | Int64[] retArr = ret.GetArrayForWrite();
|
---|
404 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
405 | (c) => {
|
---|
406 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
407 | ILQuickSort.QuickSortAscST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
408 | });
|
---|
409 | } else {
|
---|
410 |
|
---|
411 | Int64[] retArr = ret.GetArrayForWrite();
|
---|
412 | for (int c = 0; c < maxRuns; c++) {
|
---|
413 | if (posInArr >= A.Size.NumberOfElements)
|
---|
414 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
415 | ILQuickSort.QuickSortAscST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
416 | posInArr += dimLen * inc;
|
---|
417 | }
|
---|
418 | }
|
---|
419 | }
|
---|
420 | //if (descending) {
|
---|
421 | // for (int c = 0; c < maxRuns; c++) {
|
---|
422 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
423 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
424 | // ILQuickSort.QuickSortDescSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
425 | // posInArr += dimLen * inc;
|
---|
426 | // }
|
---|
427 | //} else {
|
---|
428 | // // ascending
|
---|
429 | // for (int c = 0; c < maxRuns; c++) {
|
---|
430 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
431 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
432 | // ILQuickSort.QuickSortAscSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
433 | // posInArr += dimLen * inc;
|
---|
434 | // }
|
---|
435 | //}
|
---|
436 | return ret;
|
---|
437 | }
|
---|
438 | }
|
---|
439 | /// <summary>
|
---|
440 | /// Sort data in A along dimension 'dim'
|
---|
441 | /// </summary>
|
---|
442 | /// <param name="A">Input array, n-dimensional</param>
|
---|
443 | /// <param name="descending">Direction of sorting</param>
|
---|
444 | /// <param name="dim">Dimension index to sort along</param>
|
---|
445 | /// <param name="Indices">[Output] Returns permutation matrix</param>
|
---|
446 | /// <returns>Sorted array of the same size as A</returns>
|
---|
447 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
448 | /// algorithm.
|
---|
449 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
450 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
451 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
452 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
453 | /// <para>This overload also returns an array 'Indices' which will hold the indices into the original
|
---|
454 | /// elements <b>after sorting</b>. Elements of 'Indices' are of type double.</para>
|
---|
455 | /// <example><code>ILArray<double> A = ILMath.rand(1,5);
|
---|
456 | /// //A:
|
---|
457 | /// // 0.4324 0.9231 0.1231 0.1423 0.2991
|
---|
458 | /// ILArray<double> I;
|
---|
459 | /// ILArray<double> R = ILMath.sort(A, out I, 1, false);
|
---|
460 | /// //R:
|
---|
461 | /// // 0.1231 0.1423 0.2991 0.4324 0.9231
|
---|
462 | /// //I:
|
---|
463 | /// // 2 3 4 0 1
|
---|
464 | /// </code>
|
---|
465 | /// </example>
|
---|
466 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
467 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
468 | /// </remarks>
|
---|
469 | public static ILRetArray< Int64> sort( ILInArray< Int64> A, ILOutArray<double> Indices = null, int dim = -1, bool descending = false ) {
|
---|
470 | using (ILScope.Enter(A)) {
|
---|
471 | if (object.Equals(A, null))
|
---|
472 | throw new Exception("parameter A must not be null");
|
---|
473 | if (object.Equals(Indices, null)) {
|
---|
474 | return sort(A,dim,descending);
|
---|
475 | }
|
---|
476 | if (dim >= A.Size.NumberOfDimensions)
|
---|
477 | throw new ILArgumentException("invalid dimension argument");
|
---|
478 | // early exit: scalar/ empty
|
---|
479 | if (A.IsEmpty) {
|
---|
480 | Indices.a = empty<double>(ILSize.Empty00);
|
---|
481 | return empty< Int64>(ILSize.Empty00);
|
---|
482 | }
|
---|
483 | if (A.IsScalar) {
|
---|
484 | Indices.a = 0;
|
---|
485 | return A.C;
|
---|
486 | }
|
---|
487 | if (dim < 0) {
|
---|
488 | dim = A.S.WorkingDimension();
|
---|
489 | }
|
---|
490 | int[] tmpDims = A.Size.ToIntArray();
|
---|
491 | for (int i = 0; i < A.Size.NumberOfDimensions; i++) {
|
---|
492 | if (i == dim)
|
---|
493 | tmpDims[i] = A.Size[dim];
|
---|
494 | else
|
---|
495 | tmpDims[i] = 1;
|
---|
496 | }
|
---|
497 | //if (Indices.IsEmpty || !Indices.D.IsSameSize(A.D)) {
|
---|
498 | Indices.a = reshape(counter(0.0, 1.0, 1, A.Size[dim]), tmpDims);
|
---|
499 | tmpDims = A.Size.ToIntArray();
|
---|
500 | tmpDims[dim] = 1;
|
---|
501 | Indices.a = repmat(Indices, tmpDims);
|
---|
502 | //}
|
---|
503 | ILArray<Int64> ret = A.C;
|
---|
504 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
505 | int dimLen = A.Size[dim];
|
---|
506 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
507 | int posInArr = 0;
|
---|
508 | if (descending) {
|
---|
509 | if (maxRuns == 1) {
|
---|
510 | ILQuickSort.QuickSortDescIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
511 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
512 | Int64 [] retArr = ret.GetArrayForWrite();
|
---|
513 | double[] indArr = Indices.GetArrayForRead();
|
---|
514 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
515 | (c) => {
|
---|
516 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements-1);
|
---|
517 | ILQuickSort.QuickSortDescIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
518 | });
|
---|
519 | } else {
|
---|
520 | for (int c = 0; c < maxRuns; c++) {
|
---|
521 | if (posInArr >= A.Size.NumberOfElements)
|
---|
522 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
523 | ILQuickSort.QuickSortDescIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
524 | posInArr += dimLen * inc;
|
---|
525 | }
|
---|
526 | }
|
---|
527 | } else {
|
---|
528 | // ascending
|
---|
529 | if (maxRuns == 1) {
|
---|
530 | ILQuickSort.QuickSortAscIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
531 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
532 |
|
---|
533 | Int64[] retArr = ret.GetArrayForWrite();
|
---|
534 | double[] indArr = Indices.GetArrayForRead();
|
---|
535 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
536 | (c) => {
|
---|
537 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
538 | ILQuickSort.QuickSortAscIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
539 | });
|
---|
540 | } else {
|
---|
541 | for (int c = 0; c < maxRuns; c++) {
|
---|
542 | if (posInArr >= A.Size.NumberOfElements)
|
---|
543 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
544 | ILQuickSort.QuickSortAscIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
545 | posInArr += dimLen * inc;
|
---|
546 | }
|
---|
547 | }
|
---|
548 | }
|
---|
549 | return ret;
|
---|
550 | }
|
---|
551 | }
|
---|
552 | /// <summary>
|
---|
553 | /// Sort data in A along first non singleton dimension
|
---|
554 | /// </summary>
|
---|
555 | /// <param name="A">Input array, n-dimensional</param>
|
---|
556 | /// <returns>Sorted array of the same size as A</returns>
|
---|
557 | /// <remarks>The data in A will be sorted in ascending order using a non-recursive quick sort algorithm.
|
---|
558 | /// Elements along the columns of A will get sorted independently from each other. A is not altered.
|
---|
559 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
560 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
561 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
562 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
563 | /// </remarks>
|
---|
564 | public static ILRetArray< Int32 > sort (ILInArray< Int32 > A) {
|
---|
565 | using (ILScope.Enter(A)) {
|
---|
566 | int fnsd = A.Size.WorkingDimension();
|
---|
567 | if (fnsd < 0) return A.C;
|
---|
568 | return sort(A, fnsd, false);
|
---|
569 | }
|
---|
570 | }
|
---|
571 | /// <summary>
|
---|
572 | /// Sort data in A along first non singleton dimension
|
---|
573 | /// </summary>
|
---|
574 | /// <param name="A">Input array, n-dimensional</param>
|
---|
575 | /// <param name="descending">Determine the direction of sorting (ascending/ descending)</param>
|
---|
576 | /// <returns>Sorted array of the same size as A</returns>
|
---|
577 | /// <remarks>The data in A will be sorted using the quick sort algorithm. Data
|
---|
578 | /// along the first non singleton dimension will get sorted independently from data
|
---|
579 | /// in the next row/column.
|
---|
580 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
581 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
582 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
583 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
584 | /// </remarks>
|
---|
585 | public static ILRetArray< Int32 > sort (ILInArray< Int32 > A, bool descending) {
|
---|
586 | using (ILScope.Enter(A)) {
|
---|
587 | int fnsd = A.Size.WorkingDimension();
|
---|
588 | if (fnsd < 0) return A.C;
|
---|
589 | return sort(A, fnsd, descending);
|
---|
590 | }
|
---|
591 | }
|
---|
592 | /// <summary>
|
---|
593 | /// Sort data in A along dimension 'dim'
|
---|
594 | /// </summary>
|
---|
595 | /// <param name="A">Input array, n-dimensional</param>
|
---|
596 | /// <param name="descending">Direction of sorting</param>
|
---|
597 | /// <param name="dim">Dimension index to sort along</param>
|
---|
598 | /// <returns>Sorted array of the same size as A</returns>
|
---|
599 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
600 | /// algorithm.
|
---|
601 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
602 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
603 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
604 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
605 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
606 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
607 | /// </remarks>
|
---|
608 | public static ILRetArray< Int32 > sort (ILInArray< Int32 > A, int dim, bool descending) {
|
---|
609 | if (object.Equals (A,null))
|
---|
610 | throw new Exception("parameter A must not be null");
|
---|
611 | using (ILScope.Enter(A)) {
|
---|
612 | if (dim < 0) // || dim >= A.Dimensions.NumberOfDimensions)
|
---|
613 | throw new ILArgumentException("invalid dimension argument");
|
---|
614 | if (dim >= A.Size.NumberOfDimensions)
|
---|
615 | return A.C;
|
---|
616 | // early exit: scalar/ empty
|
---|
617 | if (A.IsEmpty || A.IsScalar)
|
---|
618 | return A.C;
|
---|
619 | ILArray< Int32> ret = A.C; // new ILArray<double>(new Storage.ILDenseStorage<double>(ILMemoryPool.Pool.New<double>(A.Dimensions.NumberOfElements), A.Dimensions));
|
---|
620 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
621 | int dimLen = A.Size[dim];
|
---|
622 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
623 | int posInArr = 0;
|
---|
624 | if (descending) {
|
---|
625 | if (maxRuns == 1) {
|
---|
626 | ILQuickSort.QuickSortDescMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
627 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
628 |
|
---|
629 | Int32[] retArr = ret.GetArrayForWrite();
|
---|
630 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
631 | (c) => {
|
---|
632 | int pos = (int)(((long)dimLen * c * inc) % (A.Size.NumberOfElements - 1));
|
---|
633 | ILQuickSort.QuickSortDescST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
634 | });
|
---|
635 | } else {
|
---|
636 |
|
---|
637 | Int32[] retArr = ret.GetArrayForWrite();
|
---|
638 | for (int c = 0; c < maxRuns; c++) {
|
---|
639 | if (posInArr >= A.Size.NumberOfElements)
|
---|
640 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
641 | ILQuickSort.QuickSortDescST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
642 | posInArr += dimLen * inc;
|
---|
643 | }
|
---|
644 | }
|
---|
645 | } else {
|
---|
646 | // ascending
|
---|
647 | if (maxRuns == 1) {
|
---|
648 | ILQuickSort.QuickSortAscMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
649 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
650 |
|
---|
651 | Int32[] retArr = ret.GetArrayForWrite();
|
---|
652 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
653 | (c) => {
|
---|
654 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
655 | ILQuickSort.QuickSortAscST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
656 | });
|
---|
657 | } else {
|
---|
658 |
|
---|
659 | Int32[] retArr = ret.GetArrayForWrite();
|
---|
660 | for (int c = 0; c < maxRuns; c++) {
|
---|
661 | if (posInArr >= A.Size.NumberOfElements)
|
---|
662 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
663 | ILQuickSort.QuickSortAscST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
664 | posInArr += dimLen * inc;
|
---|
665 | }
|
---|
666 | }
|
---|
667 | }
|
---|
668 | //if (descending) {
|
---|
669 | // for (int c = 0; c < maxRuns; c++) {
|
---|
670 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
671 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
672 | // ILQuickSort.QuickSortDescSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
673 | // posInArr += dimLen * inc;
|
---|
674 | // }
|
---|
675 | //} else {
|
---|
676 | // // ascending
|
---|
677 | // for (int c = 0; c < maxRuns; c++) {
|
---|
678 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
679 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
680 | // ILQuickSort.QuickSortAscSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
681 | // posInArr += dimLen * inc;
|
---|
682 | // }
|
---|
683 | //}
|
---|
684 | return ret;
|
---|
685 | }
|
---|
686 | }
|
---|
687 | /// <summary>
|
---|
688 | /// Sort data in A along dimension 'dim'
|
---|
689 | /// </summary>
|
---|
690 | /// <param name="A">Input array, n-dimensional</param>
|
---|
691 | /// <param name="descending">Direction of sorting</param>
|
---|
692 | /// <param name="dim">Dimension index to sort along</param>
|
---|
693 | /// <param name="Indices">[Output] Returns permutation matrix</param>
|
---|
694 | /// <returns>Sorted array of the same size as A</returns>
|
---|
695 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
696 | /// algorithm.
|
---|
697 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
698 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
699 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
700 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
701 | /// <para>This overload also returns an array 'Indices' which will hold the indices into the original
|
---|
702 | /// elements <b>after sorting</b>. Elements of 'Indices' are of type double.</para>
|
---|
703 | /// <example><code>ILArray<double> A = ILMath.rand(1,5);
|
---|
704 | /// //A:
|
---|
705 | /// // 0.4324 0.9231 0.1231 0.1423 0.2991
|
---|
706 | /// ILArray<double> I;
|
---|
707 | /// ILArray<double> R = ILMath.sort(A, out I, 1, false);
|
---|
708 | /// //R:
|
---|
709 | /// // 0.1231 0.1423 0.2991 0.4324 0.9231
|
---|
710 | /// //I:
|
---|
711 | /// // 2 3 4 0 1
|
---|
712 | /// </code>
|
---|
713 | /// </example>
|
---|
714 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
715 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
716 | /// </remarks>
|
---|
717 | public static ILRetArray< Int32> sort( ILInArray< Int32> A, ILOutArray<double> Indices = null, int dim = -1, bool descending = false ) {
|
---|
718 | using (ILScope.Enter(A)) {
|
---|
719 | if (object.Equals(A, null))
|
---|
720 | throw new Exception("parameter A must not be null");
|
---|
721 | if (object.Equals(Indices, null)) {
|
---|
722 | return sort(A,dim,descending);
|
---|
723 | }
|
---|
724 | if (dim >= A.Size.NumberOfDimensions)
|
---|
725 | throw new ILArgumentException("invalid dimension argument");
|
---|
726 | // early exit: scalar/ empty
|
---|
727 | if (A.IsEmpty) {
|
---|
728 | Indices.a = empty<double>(ILSize.Empty00);
|
---|
729 | return empty< Int32>(ILSize.Empty00);
|
---|
730 | }
|
---|
731 | if (A.IsScalar) {
|
---|
732 | Indices.a = 0;
|
---|
733 | return A.C;
|
---|
734 | }
|
---|
735 | if (dim < 0) {
|
---|
736 | dim = A.S.WorkingDimension();
|
---|
737 | }
|
---|
738 | int[] tmpDims = A.Size.ToIntArray();
|
---|
739 | for (int i = 0; i < A.Size.NumberOfDimensions; i++) {
|
---|
740 | if (i == dim)
|
---|
741 | tmpDims[i] = A.Size[dim];
|
---|
742 | else
|
---|
743 | tmpDims[i] = 1;
|
---|
744 | }
|
---|
745 | //if (Indices.IsEmpty || !Indices.D.IsSameSize(A.D)) {
|
---|
746 | Indices.a = reshape(counter(0.0, 1.0, 1, A.Size[dim]), tmpDims);
|
---|
747 | tmpDims = A.Size.ToIntArray();
|
---|
748 | tmpDims[dim] = 1;
|
---|
749 | Indices.a = repmat(Indices, tmpDims);
|
---|
750 | //}
|
---|
751 | ILArray<Int32> ret = A.C;
|
---|
752 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
753 | int dimLen = A.Size[dim];
|
---|
754 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
755 | int posInArr = 0;
|
---|
756 | if (descending) {
|
---|
757 | if (maxRuns == 1) {
|
---|
758 | ILQuickSort.QuickSortDescIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
759 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
760 | Int32 [] retArr = ret.GetArrayForWrite();
|
---|
761 | double[] indArr = Indices.GetArrayForRead();
|
---|
762 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
763 | (c) => {
|
---|
764 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements-1);
|
---|
765 | ILQuickSort.QuickSortDescIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
766 | });
|
---|
767 | } else {
|
---|
768 | for (int c = 0; c < maxRuns; c++) {
|
---|
769 | if (posInArr >= A.Size.NumberOfElements)
|
---|
770 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
771 | ILQuickSort.QuickSortDescIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
772 | posInArr += dimLen * inc;
|
---|
773 | }
|
---|
774 | }
|
---|
775 | } else {
|
---|
776 | // ascending
|
---|
777 | if (maxRuns == 1) {
|
---|
778 | ILQuickSort.QuickSortAscIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
779 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
780 |
|
---|
781 | Int32[] retArr = ret.GetArrayForWrite();
|
---|
782 | double[] indArr = Indices.GetArrayForRead();
|
---|
783 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
784 | (c) => {
|
---|
785 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
786 | ILQuickSort.QuickSortAscIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
787 | });
|
---|
788 | } else {
|
---|
789 | for (int c = 0; c < maxRuns; c++) {
|
---|
790 | if (posInArr >= A.Size.NumberOfElements)
|
---|
791 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
792 | ILQuickSort.QuickSortAscIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
793 | posInArr += dimLen * inc;
|
---|
794 | }
|
---|
795 | }
|
---|
796 | }
|
---|
797 | return ret;
|
---|
798 | }
|
---|
799 | }
|
---|
800 | /// <summary>
|
---|
801 | /// Sort data in A along first non singleton dimension
|
---|
802 | /// </summary>
|
---|
803 | /// <param name="A">Input array, n-dimensional</param>
|
---|
804 | /// <returns>Sorted array of the same size as A</returns>
|
---|
805 | /// <remarks>The data in A will be sorted in ascending order using a non-recursive quick sort algorithm.
|
---|
806 | /// Elements along the columns of A will get sorted independently from each other. A is not altered.
|
---|
807 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
808 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
809 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
810 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
811 | /// </remarks>
|
---|
812 | public static ILRetArray< float > sort (ILInArray< float > A) {
|
---|
813 | using (ILScope.Enter(A)) {
|
---|
814 | int fnsd = A.Size.WorkingDimension();
|
---|
815 | if (fnsd < 0) return A.C;
|
---|
816 | return sort(A, fnsd, false);
|
---|
817 | }
|
---|
818 | }
|
---|
819 | /// <summary>
|
---|
820 | /// Sort data in A along first non singleton dimension
|
---|
821 | /// </summary>
|
---|
822 | /// <param name="A">Input array, n-dimensional</param>
|
---|
823 | /// <param name="descending">Determine the direction of sorting (ascending/ descending)</param>
|
---|
824 | /// <returns>Sorted array of the same size as A</returns>
|
---|
825 | /// <remarks>The data in A will be sorted using the quick sort algorithm. Data
|
---|
826 | /// along the first non singleton dimension will get sorted independently from data
|
---|
827 | /// in the next row/column.
|
---|
828 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
829 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
830 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
831 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
832 | /// </remarks>
|
---|
833 | public static ILRetArray< float > sort (ILInArray< float > A, bool descending) {
|
---|
834 | using (ILScope.Enter(A)) {
|
---|
835 | int fnsd = A.Size.WorkingDimension();
|
---|
836 | if (fnsd < 0) return A.C;
|
---|
837 | return sort(A, fnsd, descending);
|
---|
838 | }
|
---|
839 | }
|
---|
840 | /// <summary>
|
---|
841 | /// Sort data in A along dimension 'dim'
|
---|
842 | /// </summary>
|
---|
843 | /// <param name="A">Input array, n-dimensional</param>
|
---|
844 | /// <param name="descending">Direction of sorting</param>
|
---|
845 | /// <param name="dim">Dimension index to sort along</param>
|
---|
846 | /// <returns>Sorted array of the same size as A</returns>
|
---|
847 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
848 | /// algorithm.
|
---|
849 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
850 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
851 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
852 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
853 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
854 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
855 | /// </remarks>
|
---|
856 | public static ILRetArray< float > sort (ILInArray< float > A, int dim, bool descending) {
|
---|
857 | if (object.Equals (A,null))
|
---|
858 | throw new Exception("parameter A must not be null");
|
---|
859 | using (ILScope.Enter(A)) {
|
---|
860 | if (dim < 0) // || dim >= A.Dimensions.NumberOfDimensions)
|
---|
861 | throw new ILArgumentException("invalid dimension argument");
|
---|
862 | if (dim >= A.Size.NumberOfDimensions)
|
---|
863 | return A.C;
|
---|
864 | // early exit: scalar/ empty
|
---|
865 | if (A.IsEmpty || A.IsScalar)
|
---|
866 | return A.C;
|
---|
867 | ILArray< float> ret = A.C; // new ILArray<double>(new Storage.ILDenseStorage<double>(ILMemoryPool.Pool.New<double>(A.Dimensions.NumberOfElements), A.Dimensions));
|
---|
868 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
869 | int dimLen = A.Size[dim];
|
---|
870 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
871 | int posInArr = 0;
|
---|
872 | if (descending) {
|
---|
873 | if (maxRuns == 1) {
|
---|
874 | ILQuickSort.QuickSortDescMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
875 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
876 |
|
---|
877 | float[] retArr = ret.GetArrayForWrite();
|
---|
878 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
879 | (c) => {
|
---|
880 | int pos = (int)(((long)dimLen * c * inc) % (A.Size.NumberOfElements - 1));
|
---|
881 | ILQuickSort.QuickSortDescST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
882 | });
|
---|
883 | } else {
|
---|
884 |
|
---|
885 | float[] retArr = ret.GetArrayForWrite();
|
---|
886 | for (int c = 0; c < maxRuns; c++) {
|
---|
887 | if (posInArr >= A.Size.NumberOfElements)
|
---|
888 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
889 | ILQuickSort.QuickSortDescST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
890 | posInArr += dimLen * inc;
|
---|
891 | }
|
---|
892 | }
|
---|
893 | } else {
|
---|
894 | // ascending
|
---|
895 | if (maxRuns == 1) {
|
---|
896 | ILQuickSort.QuickSortAscMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
897 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
898 |
|
---|
899 | float[] retArr = ret.GetArrayForWrite();
|
---|
900 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
901 | (c) => {
|
---|
902 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
903 | ILQuickSort.QuickSortAscST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
904 | });
|
---|
905 | } else {
|
---|
906 |
|
---|
907 | float[] retArr = ret.GetArrayForWrite();
|
---|
908 | for (int c = 0; c < maxRuns; c++) {
|
---|
909 | if (posInArr >= A.Size.NumberOfElements)
|
---|
910 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
911 | ILQuickSort.QuickSortAscST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
912 | posInArr += dimLen * inc;
|
---|
913 | }
|
---|
914 | }
|
---|
915 | }
|
---|
916 | //if (descending) {
|
---|
917 | // for (int c = 0; c < maxRuns; c++) {
|
---|
918 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
919 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
920 | // ILQuickSort.QuickSortDescSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
921 | // posInArr += dimLen * inc;
|
---|
922 | // }
|
---|
923 | //} else {
|
---|
924 | // // ascending
|
---|
925 | // for (int c = 0; c < maxRuns; c++) {
|
---|
926 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
927 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
928 | // ILQuickSort.QuickSortAscSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
929 | // posInArr += dimLen * inc;
|
---|
930 | // }
|
---|
931 | //}
|
---|
932 | return ret;
|
---|
933 | }
|
---|
934 | }
|
---|
935 | /// <summary>
|
---|
936 | /// Sort data in A along dimension 'dim'
|
---|
937 | /// </summary>
|
---|
938 | /// <param name="A">Input array, n-dimensional</param>
|
---|
939 | /// <param name="descending">Direction of sorting</param>
|
---|
940 | /// <param name="dim">Dimension index to sort along</param>
|
---|
941 | /// <param name="Indices">[Output] Returns permutation matrix</param>
|
---|
942 | /// <returns>Sorted array of the same size as A</returns>
|
---|
943 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
944 | /// algorithm.
|
---|
945 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
946 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
947 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
948 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
949 | /// <para>This overload also returns an array 'Indices' which will hold the indices into the original
|
---|
950 | /// elements <b>after sorting</b>. Elements of 'Indices' are of type double.</para>
|
---|
951 | /// <example><code>ILArray<double> A = ILMath.rand(1,5);
|
---|
952 | /// //A:
|
---|
953 | /// // 0.4324 0.9231 0.1231 0.1423 0.2991
|
---|
954 | /// ILArray<double> I;
|
---|
955 | /// ILArray<double> R = ILMath.sort(A, out I, 1, false);
|
---|
956 | /// //R:
|
---|
957 | /// // 0.1231 0.1423 0.2991 0.4324 0.9231
|
---|
958 | /// //I:
|
---|
959 | /// // 2 3 4 0 1
|
---|
960 | /// </code>
|
---|
961 | /// </example>
|
---|
962 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
963 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
964 | /// </remarks>
|
---|
965 | public static ILRetArray< float> sort( ILInArray< float> A, ILOutArray<double> Indices = null, int dim = -1, bool descending = false ) {
|
---|
966 | using (ILScope.Enter(A)) {
|
---|
967 | if (object.Equals(A, null))
|
---|
968 | throw new Exception("parameter A must not be null");
|
---|
969 | if (object.Equals(Indices, null)) {
|
---|
970 | return sort(A,dim,descending);
|
---|
971 | }
|
---|
972 | if (dim >= A.Size.NumberOfDimensions)
|
---|
973 | throw new ILArgumentException("invalid dimension argument");
|
---|
974 | // early exit: scalar/ empty
|
---|
975 | if (A.IsEmpty) {
|
---|
976 | Indices.a = empty<double>(ILSize.Empty00);
|
---|
977 | return empty< float>(ILSize.Empty00);
|
---|
978 | }
|
---|
979 | if (A.IsScalar) {
|
---|
980 | Indices.a = 0;
|
---|
981 | return A.C;
|
---|
982 | }
|
---|
983 | if (dim < 0) {
|
---|
984 | dim = A.S.WorkingDimension();
|
---|
985 | }
|
---|
986 | int[] tmpDims = A.Size.ToIntArray();
|
---|
987 | for (int i = 0; i < A.Size.NumberOfDimensions; i++) {
|
---|
988 | if (i == dim)
|
---|
989 | tmpDims[i] = A.Size[dim];
|
---|
990 | else
|
---|
991 | tmpDims[i] = 1;
|
---|
992 | }
|
---|
993 | //if (Indices.IsEmpty || !Indices.D.IsSameSize(A.D)) {
|
---|
994 | Indices.a = reshape(counter(0.0, 1.0, 1, A.Size[dim]), tmpDims);
|
---|
995 | tmpDims = A.Size.ToIntArray();
|
---|
996 | tmpDims[dim] = 1;
|
---|
997 | Indices.a = repmat(Indices, tmpDims);
|
---|
998 | //}
|
---|
999 | ILArray<float> ret = A.C;
|
---|
1000 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
1001 | int dimLen = A.Size[dim];
|
---|
1002 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
1003 | int posInArr = 0;
|
---|
1004 | if (descending) {
|
---|
1005 | if (maxRuns == 1) {
|
---|
1006 | ILQuickSort.QuickSortDescIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1007 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1008 | float [] retArr = ret.GetArrayForWrite();
|
---|
1009 | double[] indArr = Indices.GetArrayForRead();
|
---|
1010 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1011 | (c) => {
|
---|
1012 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements-1);
|
---|
1013 | ILQuickSort.QuickSortDescIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1014 | });
|
---|
1015 | } else {
|
---|
1016 | for (int c = 0; c < maxRuns; c++) {
|
---|
1017 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1018 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1019 | ILQuickSort.QuickSortDescIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1020 | posInArr += dimLen * inc;
|
---|
1021 | }
|
---|
1022 | }
|
---|
1023 | } else {
|
---|
1024 | // ascending
|
---|
1025 | if (maxRuns == 1) {
|
---|
1026 | ILQuickSort.QuickSortAscIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1027 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1028 |
|
---|
1029 | float[] retArr = ret.GetArrayForWrite();
|
---|
1030 | double[] indArr = Indices.GetArrayForRead();
|
---|
1031 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1032 | (c) => {
|
---|
1033 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
1034 | ILQuickSort.QuickSortAscIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1035 | });
|
---|
1036 | } else {
|
---|
1037 | for (int c = 0; c < maxRuns; c++) {
|
---|
1038 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1039 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1040 | ILQuickSort.QuickSortAscIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1041 | posInArr += dimLen * inc;
|
---|
1042 | }
|
---|
1043 | }
|
---|
1044 | }
|
---|
1045 | return ret;
|
---|
1046 | }
|
---|
1047 | }
|
---|
1048 | /// <summary>
|
---|
1049 | /// Sort data in A along first non singleton dimension
|
---|
1050 | /// </summary>
|
---|
1051 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1052 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1053 | /// <remarks>The data in A will be sorted in ascending order using a non-recursive quick sort algorithm.
|
---|
1054 | /// Elements along the columns of A will get sorted independently from each other. A is not altered.
|
---|
1055 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1056 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1057 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1058 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1059 | /// </remarks>
|
---|
1060 | public static ILRetArray< fcomplex > sort (ILInArray< fcomplex > A) {
|
---|
1061 | using (ILScope.Enter(A)) {
|
---|
1062 | int fnsd = A.Size.WorkingDimension();
|
---|
1063 | if (fnsd < 0) return A.C;
|
---|
1064 | return sort(A, fnsd, false);
|
---|
1065 | }
|
---|
1066 | }
|
---|
1067 | /// <summary>
|
---|
1068 | /// Sort data in A along first non singleton dimension
|
---|
1069 | /// </summary>
|
---|
1070 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1071 | /// <param name="descending">Determine the direction of sorting (ascending/ descending)</param>
|
---|
1072 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1073 | /// <remarks>The data in A will be sorted using the quick sort algorithm. Data
|
---|
1074 | /// along the first non singleton dimension will get sorted independently from data
|
---|
1075 | /// in the next row/column.
|
---|
1076 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1077 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1078 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1079 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1080 | /// </remarks>
|
---|
1081 | public static ILRetArray< fcomplex > sort (ILInArray< fcomplex > A, bool descending) {
|
---|
1082 | using (ILScope.Enter(A)) {
|
---|
1083 | int fnsd = A.Size.WorkingDimension();
|
---|
1084 | if (fnsd < 0) return A.C;
|
---|
1085 | return sort(A, fnsd, descending);
|
---|
1086 | }
|
---|
1087 | }
|
---|
1088 | /// <summary>
|
---|
1089 | /// Sort data in A along dimension 'dim'
|
---|
1090 | /// </summary>
|
---|
1091 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1092 | /// <param name="descending">Direction of sorting</param>
|
---|
1093 | /// <param name="dim">Dimension index to sort along</param>
|
---|
1094 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1095 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
1096 | /// algorithm.
|
---|
1097 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1098 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1099 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
1100 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
1101 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1102 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1103 | /// </remarks>
|
---|
1104 | public static ILRetArray< fcomplex > sort (ILInArray< fcomplex > A, int dim, bool descending) {
|
---|
1105 | if (object.Equals (A,null))
|
---|
1106 | throw new Exception("parameter A must not be null");
|
---|
1107 | using (ILScope.Enter(A)) {
|
---|
1108 | if (dim < 0) // || dim >= A.Dimensions.NumberOfDimensions)
|
---|
1109 | throw new ILArgumentException("invalid dimension argument");
|
---|
1110 | if (dim >= A.Size.NumberOfDimensions)
|
---|
1111 | return A.C;
|
---|
1112 | // early exit: scalar/ empty
|
---|
1113 | if (A.IsEmpty || A.IsScalar)
|
---|
1114 | return A.C;
|
---|
1115 | ILArray< fcomplex> ret = A.C; // new ILArray<double>(new Storage.ILDenseStorage<double>(ILMemoryPool.Pool.New<double>(A.Dimensions.NumberOfElements), A.Dimensions));
|
---|
1116 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
1117 | int dimLen = A.Size[dim];
|
---|
1118 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
1119 | int posInArr = 0;
|
---|
1120 | if (descending) {
|
---|
1121 | if (maxRuns == 1) {
|
---|
1122 | ILQuickSort.QuickSortDescMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1123 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1124 |
|
---|
1125 | fcomplex[] retArr = ret.GetArrayForWrite();
|
---|
1126 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1127 | (c) => {
|
---|
1128 | int pos = (int)(((long)dimLen * c * inc) % (A.Size.NumberOfElements - 1));
|
---|
1129 | ILQuickSort.QuickSortDescST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1130 | });
|
---|
1131 | } else {
|
---|
1132 |
|
---|
1133 | fcomplex[] retArr = ret.GetArrayForWrite();
|
---|
1134 | for (int c = 0; c < maxRuns; c++) {
|
---|
1135 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1136 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1137 | ILQuickSort.QuickSortDescST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1138 | posInArr += dimLen * inc;
|
---|
1139 | }
|
---|
1140 | }
|
---|
1141 | } else {
|
---|
1142 | // ascending
|
---|
1143 | if (maxRuns == 1) {
|
---|
1144 | ILQuickSort.QuickSortAscMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1145 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1146 |
|
---|
1147 | fcomplex[] retArr = ret.GetArrayForWrite();
|
---|
1148 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1149 | (c) => {
|
---|
1150 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
1151 | ILQuickSort.QuickSortAscST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1152 | });
|
---|
1153 | } else {
|
---|
1154 |
|
---|
1155 | fcomplex[] retArr = ret.GetArrayForWrite();
|
---|
1156 | for (int c = 0; c < maxRuns; c++) {
|
---|
1157 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1158 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1159 | ILQuickSort.QuickSortAscST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1160 | posInArr += dimLen * inc;
|
---|
1161 | }
|
---|
1162 | }
|
---|
1163 | }
|
---|
1164 | //if (descending) {
|
---|
1165 | // for (int c = 0; c < maxRuns; c++) {
|
---|
1166 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
1167 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
1168 | // ILQuickSort.QuickSortDescSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
1169 | // posInArr += dimLen * inc;
|
---|
1170 | // }
|
---|
1171 | //} else {
|
---|
1172 | // // ascending
|
---|
1173 | // for (int c = 0; c < maxRuns; c++) {
|
---|
1174 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
1175 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
1176 | // ILQuickSort.QuickSortAscSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
1177 | // posInArr += dimLen * inc;
|
---|
1178 | // }
|
---|
1179 | //}
|
---|
1180 | return ret;
|
---|
1181 | }
|
---|
1182 | }
|
---|
1183 | /// <summary>
|
---|
1184 | /// Sort data in A along dimension 'dim'
|
---|
1185 | /// </summary>
|
---|
1186 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1187 | /// <param name="descending">Direction of sorting</param>
|
---|
1188 | /// <param name="dim">Dimension index to sort along</param>
|
---|
1189 | /// <param name="Indices">[Output] Returns permutation matrix</param>
|
---|
1190 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1191 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
1192 | /// algorithm.
|
---|
1193 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1194 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1195 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
1196 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
1197 | /// <para>This overload also returns an array 'Indices' which will hold the indices into the original
|
---|
1198 | /// elements <b>after sorting</b>. Elements of 'Indices' are of type double.</para>
|
---|
1199 | /// <example><code>ILArray<double> A = ILMath.rand(1,5);
|
---|
1200 | /// //A:
|
---|
1201 | /// // 0.4324 0.9231 0.1231 0.1423 0.2991
|
---|
1202 | /// ILArray<double> I;
|
---|
1203 | /// ILArray<double> R = ILMath.sort(A, out I, 1, false);
|
---|
1204 | /// //R:
|
---|
1205 | /// // 0.1231 0.1423 0.2991 0.4324 0.9231
|
---|
1206 | /// //I:
|
---|
1207 | /// // 2 3 4 0 1
|
---|
1208 | /// </code>
|
---|
1209 | /// </example>
|
---|
1210 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1211 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1212 | /// </remarks>
|
---|
1213 | public static ILRetArray< fcomplex> sort( ILInArray< fcomplex> A, ILOutArray<double> Indices = null, int dim = -1, bool descending = false ) {
|
---|
1214 | using (ILScope.Enter(A)) {
|
---|
1215 | if (object.Equals(A, null))
|
---|
1216 | throw new Exception("parameter A must not be null");
|
---|
1217 | if (object.Equals(Indices, null)) {
|
---|
1218 | return sort(A,dim,descending);
|
---|
1219 | }
|
---|
1220 | if (dim >= A.Size.NumberOfDimensions)
|
---|
1221 | throw new ILArgumentException("invalid dimension argument");
|
---|
1222 | // early exit: scalar/ empty
|
---|
1223 | if (A.IsEmpty) {
|
---|
1224 | Indices.a = empty<double>(ILSize.Empty00);
|
---|
1225 | return empty< fcomplex>(ILSize.Empty00);
|
---|
1226 | }
|
---|
1227 | if (A.IsScalar) {
|
---|
1228 | Indices.a = 0;
|
---|
1229 | return A.C;
|
---|
1230 | }
|
---|
1231 | if (dim < 0) {
|
---|
1232 | dim = A.S.WorkingDimension();
|
---|
1233 | }
|
---|
1234 | int[] tmpDims = A.Size.ToIntArray();
|
---|
1235 | for (int i = 0; i < A.Size.NumberOfDimensions; i++) {
|
---|
1236 | if (i == dim)
|
---|
1237 | tmpDims[i] = A.Size[dim];
|
---|
1238 | else
|
---|
1239 | tmpDims[i] = 1;
|
---|
1240 | }
|
---|
1241 | //if (Indices.IsEmpty || !Indices.D.IsSameSize(A.D)) {
|
---|
1242 | Indices.a = reshape(counter(0.0, 1.0, 1, A.Size[dim]), tmpDims);
|
---|
1243 | tmpDims = A.Size.ToIntArray();
|
---|
1244 | tmpDims[dim] = 1;
|
---|
1245 | Indices.a = repmat(Indices, tmpDims);
|
---|
1246 | //}
|
---|
1247 | ILArray<fcomplex> ret = A.C;
|
---|
1248 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
1249 | int dimLen = A.Size[dim];
|
---|
1250 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
1251 | int posInArr = 0;
|
---|
1252 | if (descending) {
|
---|
1253 | if (maxRuns == 1) {
|
---|
1254 | ILQuickSort.QuickSortDescIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1255 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1256 | fcomplex [] retArr = ret.GetArrayForWrite();
|
---|
1257 | double[] indArr = Indices.GetArrayForRead();
|
---|
1258 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1259 | (c) => {
|
---|
1260 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements-1);
|
---|
1261 | ILQuickSort.QuickSortDescIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1262 | });
|
---|
1263 | } else {
|
---|
1264 | for (int c = 0; c < maxRuns; c++) {
|
---|
1265 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1266 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1267 | ILQuickSort.QuickSortDescIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1268 | posInArr += dimLen * inc;
|
---|
1269 | }
|
---|
1270 | }
|
---|
1271 | } else {
|
---|
1272 | // ascending
|
---|
1273 | if (maxRuns == 1) {
|
---|
1274 | ILQuickSort.QuickSortAscIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1275 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1276 |
|
---|
1277 | fcomplex[] retArr = ret.GetArrayForWrite();
|
---|
1278 | double[] indArr = Indices.GetArrayForRead();
|
---|
1279 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1280 | (c) => {
|
---|
1281 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
1282 | ILQuickSort.QuickSortAscIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1283 | });
|
---|
1284 | } else {
|
---|
1285 | for (int c = 0; c < maxRuns; c++) {
|
---|
1286 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1287 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1288 | ILQuickSort.QuickSortAscIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1289 | posInArr += dimLen * inc;
|
---|
1290 | }
|
---|
1291 | }
|
---|
1292 | }
|
---|
1293 | return ret;
|
---|
1294 | }
|
---|
1295 | }
|
---|
1296 | /// <summary>
|
---|
1297 | /// Sort data in A along first non singleton dimension
|
---|
1298 | /// </summary>
|
---|
1299 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1300 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1301 | /// <remarks>The data in A will be sorted in ascending order using a non-recursive quick sort algorithm.
|
---|
1302 | /// Elements along the columns of A will get sorted independently from each other. A is not altered.
|
---|
1303 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1304 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1305 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1306 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1307 | /// </remarks>
|
---|
1308 | public static ILRetArray< complex > sort (ILInArray< complex > A) {
|
---|
1309 | using (ILScope.Enter(A)) {
|
---|
1310 | int fnsd = A.Size.WorkingDimension();
|
---|
1311 | if (fnsd < 0) return A.C;
|
---|
1312 | return sort(A, fnsd, false);
|
---|
1313 | }
|
---|
1314 | }
|
---|
1315 | /// <summary>
|
---|
1316 | /// Sort data in A along first non singleton dimension
|
---|
1317 | /// </summary>
|
---|
1318 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1319 | /// <param name="descending">Determine the direction of sorting (ascending/ descending)</param>
|
---|
1320 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1321 | /// <remarks>The data in A will be sorted using the quick sort algorithm. Data
|
---|
1322 | /// along the first non singleton dimension will get sorted independently from data
|
---|
1323 | /// in the next row/column.
|
---|
1324 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1325 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1326 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1327 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1328 | /// </remarks>
|
---|
1329 | public static ILRetArray< complex > sort (ILInArray< complex > A, bool descending) {
|
---|
1330 | using (ILScope.Enter(A)) {
|
---|
1331 | int fnsd = A.Size.WorkingDimension();
|
---|
1332 | if (fnsd < 0) return A.C;
|
---|
1333 | return sort(A, fnsd, descending);
|
---|
1334 | }
|
---|
1335 | }
|
---|
1336 | /// <summary>
|
---|
1337 | /// Sort data in A along dimension 'dim'
|
---|
1338 | /// </summary>
|
---|
1339 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1340 | /// <param name="descending">Direction of sorting</param>
|
---|
1341 | /// <param name="dim">Dimension index to sort along</param>
|
---|
1342 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1343 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
1344 | /// algorithm.
|
---|
1345 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1346 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1347 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
1348 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
1349 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1350 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1351 | /// </remarks>
|
---|
1352 | public static ILRetArray< complex > sort (ILInArray< complex > A, int dim, bool descending) {
|
---|
1353 | if (object.Equals (A,null))
|
---|
1354 | throw new Exception("parameter A must not be null");
|
---|
1355 | using (ILScope.Enter(A)) {
|
---|
1356 | if (dim < 0) // || dim >= A.Dimensions.NumberOfDimensions)
|
---|
1357 | throw new ILArgumentException("invalid dimension argument");
|
---|
1358 | if (dim >= A.Size.NumberOfDimensions)
|
---|
1359 | return A.C;
|
---|
1360 | // early exit: scalar/ empty
|
---|
1361 | if (A.IsEmpty || A.IsScalar)
|
---|
1362 | return A.C;
|
---|
1363 | ILArray< complex> ret = A.C; // new ILArray<double>(new Storage.ILDenseStorage<double>(ILMemoryPool.Pool.New<double>(A.Dimensions.NumberOfElements), A.Dimensions));
|
---|
1364 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
1365 | int dimLen = A.Size[dim];
|
---|
1366 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
1367 | int posInArr = 0;
|
---|
1368 | if (descending) {
|
---|
1369 | if (maxRuns == 1) {
|
---|
1370 | ILQuickSort.QuickSortDescMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1371 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1372 |
|
---|
1373 | complex[] retArr = ret.GetArrayForWrite();
|
---|
1374 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1375 | (c) => {
|
---|
1376 | int pos = (int)(((long)dimLen * c * inc) % (A.Size.NumberOfElements - 1));
|
---|
1377 | ILQuickSort.QuickSortDescST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1378 | });
|
---|
1379 | } else {
|
---|
1380 |
|
---|
1381 | complex[] retArr = ret.GetArrayForWrite();
|
---|
1382 | for (int c = 0; c < maxRuns; c++) {
|
---|
1383 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1384 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1385 | ILQuickSort.QuickSortDescST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1386 | posInArr += dimLen * inc;
|
---|
1387 | }
|
---|
1388 | }
|
---|
1389 | } else {
|
---|
1390 | // ascending
|
---|
1391 | if (maxRuns == 1) {
|
---|
1392 | ILQuickSort.QuickSortAscMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1393 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1394 |
|
---|
1395 | complex[] retArr = ret.GetArrayForWrite();
|
---|
1396 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1397 | (c) => {
|
---|
1398 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
1399 | ILQuickSort.QuickSortAscST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1400 | });
|
---|
1401 | } else {
|
---|
1402 |
|
---|
1403 | complex[] retArr = ret.GetArrayForWrite();
|
---|
1404 | for (int c = 0; c < maxRuns; c++) {
|
---|
1405 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1406 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1407 | ILQuickSort.QuickSortAscST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1408 | posInArr += dimLen * inc;
|
---|
1409 | }
|
---|
1410 | }
|
---|
1411 | }
|
---|
1412 | //if (descending) {
|
---|
1413 | // for (int c = 0; c < maxRuns; c++) {
|
---|
1414 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
1415 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
1416 | // ILQuickSort.QuickSortDescSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
1417 | // posInArr += dimLen * inc;
|
---|
1418 | // }
|
---|
1419 | //} else {
|
---|
1420 | // // ascending
|
---|
1421 | // for (int c = 0; c < maxRuns; c++) {
|
---|
1422 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
1423 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
1424 | // ILQuickSort.QuickSortAscSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
1425 | // posInArr += dimLen * inc;
|
---|
1426 | // }
|
---|
1427 | //}
|
---|
1428 | return ret;
|
---|
1429 | }
|
---|
1430 | }
|
---|
1431 | /// <summary>
|
---|
1432 | /// Sort data in A along dimension 'dim'
|
---|
1433 | /// </summary>
|
---|
1434 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1435 | /// <param name="descending">Direction of sorting</param>
|
---|
1436 | /// <param name="dim">Dimension index to sort along</param>
|
---|
1437 | /// <param name="Indices">[Output] Returns permutation matrix</param>
|
---|
1438 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1439 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
1440 | /// algorithm.
|
---|
1441 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1442 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1443 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
1444 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
1445 | /// <para>This overload also returns an array 'Indices' which will hold the indices into the original
|
---|
1446 | /// elements <b>after sorting</b>. Elements of 'Indices' are of type double.</para>
|
---|
1447 | /// <example><code>ILArray<double> A = ILMath.rand(1,5);
|
---|
1448 | /// //A:
|
---|
1449 | /// // 0.4324 0.9231 0.1231 0.1423 0.2991
|
---|
1450 | /// ILArray<double> I;
|
---|
1451 | /// ILArray<double> R = ILMath.sort(A, out I, 1, false);
|
---|
1452 | /// //R:
|
---|
1453 | /// // 0.1231 0.1423 0.2991 0.4324 0.9231
|
---|
1454 | /// //I:
|
---|
1455 | /// // 2 3 4 0 1
|
---|
1456 | /// </code>
|
---|
1457 | /// </example>
|
---|
1458 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1459 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1460 | /// </remarks>
|
---|
1461 | public static ILRetArray< complex> sort( ILInArray< complex> A, ILOutArray<double> Indices = null, int dim = -1, bool descending = false ) {
|
---|
1462 | using (ILScope.Enter(A)) {
|
---|
1463 | if (object.Equals(A, null))
|
---|
1464 | throw new Exception("parameter A must not be null");
|
---|
1465 | if (object.Equals(Indices, null)) {
|
---|
1466 | return sort(A,dim,descending);
|
---|
1467 | }
|
---|
1468 | if (dim >= A.Size.NumberOfDimensions)
|
---|
1469 | throw new ILArgumentException("invalid dimension argument");
|
---|
1470 | // early exit: scalar/ empty
|
---|
1471 | if (A.IsEmpty) {
|
---|
1472 | Indices.a = empty<double>(ILSize.Empty00);
|
---|
1473 | return empty< complex>(ILSize.Empty00);
|
---|
1474 | }
|
---|
1475 | if (A.IsScalar) {
|
---|
1476 | Indices.a = 0;
|
---|
1477 | return A.C;
|
---|
1478 | }
|
---|
1479 | if (dim < 0) {
|
---|
1480 | dim = A.S.WorkingDimension();
|
---|
1481 | }
|
---|
1482 | int[] tmpDims = A.Size.ToIntArray();
|
---|
1483 | for (int i = 0; i < A.Size.NumberOfDimensions; i++) {
|
---|
1484 | if (i == dim)
|
---|
1485 | tmpDims[i] = A.Size[dim];
|
---|
1486 | else
|
---|
1487 | tmpDims[i] = 1;
|
---|
1488 | }
|
---|
1489 | //if (Indices.IsEmpty || !Indices.D.IsSameSize(A.D)) {
|
---|
1490 | Indices.a = reshape(counter(0.0, 1.0, 1, A.Size[dim]), tmpDims);
|
---|
1491 | tmpDims = A.Size.ToIntArray();
|
---|
1492 | tmpDims[dim] = 1;
|
---|
1493 | Indices.a = repmat(Indices, tmpDims);
|
---|
1494 | //}
|
---|
1495 | ILArray<complex> ret = A.C;
|
---|
1496 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
1497 | int dimLen = A.Size[dim];
|
---|
1498 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
1499 | int posInArr = 0;
|
---|
1500 | if (descending) {
|
---|
1501 | if (maxRuns == 1) {
|
---|
1502 | ILQuickSort.QuickSortDescIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1503 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1504 | complex [] retArr = ret.GetArrayForWrite();
|
---|
1505 | double[] indArr = Indices.GetArrayForRead();
|
---|
1506 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1507 | (c) => {
|
---|
1508 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements-1);
|
---|
1509 | ILQuickSort.QuickSortDescIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1510 | });
|
---|
1511 | } else {
|
---|
1512 | for (int c = 0; c < maxRuns; c++) {
|
---|
1513 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1514 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1515 | ILQuickSort.QuickSortDescIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1516 | posInArr += dimLen * inc;
|
---|
1517 | }
|
---|
1518 | }
|
---|
1519 | } else {
|
---|
1520 | // ascending
|
---|
1521 | if (maxRuns == 1) {
|
---|
1522 | ILQuickSort.QuickSortAscIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1523 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1524 |
|
---|
1525 | complex[] retArr = ret.GetArrayForWrite();
|
---|
1526 | double[] indArr = Indices.GetArrayForRead();
|
---|
1527 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1528 | (c) => {
|
---|
1529 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
1530 | ILQuickSort.QuickSortAscIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1531 | });
|
---|
1532 | } else {
|
---|
1533 | for (int c = 0; c < maxRuns; c++) {
|
---|
1534 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1535 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1536 | ILQuickSort.QuickSortAscIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1537 | posInArr += dimLen * inc;
|
---|
1538 | }
|
---|
1539 | }
|
---|
1540 | }
|
---|
1541 | return ret;
|
---|
1542 | }
|
---|
1543 | }
|
---|
1544 | /// <summary>
|
---|
1545 | /// Sort data in A along first non singleton dimension
|
---|
1546 | /// </summary>
|
---|
1547 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1548 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1549 | /// <remarks>The data in A will be sorted in ascending order using a non-recursive quick sort algorithm.
|
---|
1550 | /// Elements along the columns of A will get sorted independently from each other. A is not altered.
|
---|
1551 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1552 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1553 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1554 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1555 | /// </remarks>
|
---|
1556 | public static ILRetArray< byte > sort (ILInArray< byte > A) {
|
---|
1557 | using (ILScope.Enter(A)) {
|
---|
1558 | int fnsd = A.Size.WorkingDimension();
|
---|
1559 | if (fnsd < 0) return A.C;
|
---|
1560 | return sort(A, fnsd, false);
|
---|
1561 | }
|
---|
1562 | }
|
---|
1563 | /// <summary>
|
---|
1564 | /// Sort data in A along first non singleton dimension
|
---|
1565 | /// </summary>
|
---|
1566 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1567 | /// <param name="descending">Determine the direction of sorting (ascending/ descending)</param>
|
---|
1568 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1569 | /// <remarks>The data in A will be sorted using the quick sort algorithm. Data
|
---|
1570 | /// along the first non singleton dimension will get sorted independently from data
|
---|
1571 | /// in the next row/column.
|
---|
1572 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1573 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1574 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1575 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1576 | /// </remarks>
|
---|
1577 | public static ILRetArray< byte > sort (ILInArray< byte > A, bool descending) {
|
---|
1578 | using (ILScope.Enter(A)) {
|
---|
1579 | int fnsd = A.Size.WorkingDimension();
|
---|
1580 | if (fnsd < 0) return A.C;
|
---|
1581 | return sort(A, fnsd, descending);
|
---|
1582 | }
|
---|
1583 | }
|
---|
1584 | /// <summary>
|
---|
1585 | /// Sort data in A along dimension 'dim'
|
---|
1586 | /// </summary>
|
---|
1587 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1588 | /// <param name="descending">Direction of sorting</param>
|
---|
1589 | /// <param name="dim">Dimension index to sort along</param>
|
---|
1590 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1591 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
1592 | /// algorithm.
|
---|
1593 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1594 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1595 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
1596 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
1597 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1598 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1599 | /// </remarks>
|
---|
1600 | public static ILRetArray< byte > sort (ILInArray< byte > A, int dim, bool descending) {
|
---|
1601 | if (object.Equals (A,null))
|
---|
1602 | throw new Exception("parameter A must not be null");
|
---|
1603 | using (ILScope.Enter(A)) {
|
---|
1604 | if (dim < 0) // || dim >= A.Dimensions.NumberOfDimensions)
|
---|
1605 | throw new ILArgumentException("invalid dimension argument");
|
---|
1606 | if (dim >= A.Size.NumberOfDimensions)
|
---|
1607 | return A.C;
|
---|
1608 | // early exit: scalar/ empty
|
---|
1609 | if (A.IsEmpty || A.IsScalar)
|
---|
1610 | return A.C;
|
---|
1611 | ILArray< byte> ret = A.C; // new ILArray<double>(new Storage.ILDenseStorage<double>(ILMemoryPool.Pool.New<double>(A.Dimensions.NumberOfElements), A.Dimensions));
|
---|
1612 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
1613 | int dimLen = A.Size[dim];
|
---|
1614 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
1615 | int posInArr = 0;
|
---|
1616 | if (descending) {
|
---|
1617 | if (maxRuns == 1) {
|
---|
1618 | ILQuickSort.QuickSortDescMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1619 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1620 |
|
---|
1621 | byte[] retArr = ret.GetArrayForWrite();
|
---|
1622 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1623 | (c) => {
|
---|
1624 | int pos = (int)(((long)dimLen * c * inc) % (A.Size.NumberOfElements - 1));
|
---|
1625 | ILQuickSort.QuickSortDescST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1626 | });
|
---|
1627 | } else {
|
---|
1628 |
|
---|
1629 | byte[] retArr = ret.GetArrayForWrite();
|
---|
1630 | for (int c = 0; c < maxRuns; c++) {
|
---|
1631 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1632 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1633 | ILQuickSort.QuickSortDescST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1634 | posInArr += dimLen * inc;
|
---|
1635 | }
|
---|
1636 | }
|
---|
1637 | } else {
|
---|
1638 | // ascending
|
---|
1639 | if (maxRuns == 1) {
|
---|
1640 | ILQuickSort.QuickSortAscMT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1641 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1642 |
|
---|
1643 | byte[] retArr = ret.GetArrayForWrite();
|
---|
1644 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1645 | (c) => {
|
---|
1646 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
1647 | ILQuickSort.QuickSortAscST(retArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1648 | });
|
---|
1649 | } else {
|
---|
1650 |
|
---|
1651 | byte[] retArr = ret.GetArrayForWrite();
|
---|
1652 | for (int c = 0; c < maxRuns; c++) {
|
---|
1653 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1654 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1655 | ILQuickSort.QuickSortAscST(retArr, posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1656 | posInArr += dimLen * inc;
|
---|
1657 | }
|
---|
1658 | }
|
---|
1659 | }
|
---|
1660 | //if (descending) {
|
---|
1661 | // for (int c = 0; c < maxRuns; c++) {
|
---|
1662 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
1663 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
1664 | // ILQuickSort.QuickSortDescSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
1665 | // posInArr += dimLen * inc;
|
---|
1666 | // }
|
---|
1667 | //} else {
|
---|
1668 | // // ascending
|
---|
1669 | // for (int c = 0; c < maxRuns; c++) {
|
---|
1670 | // if (posInArr >= A.Dimensions.NumberOfElements)
|
---|
1671 | // posInArr -= (A.Dimensions.NumberOfElements - 1);
|
---|
1672 | // ILQuickSort.QuickSortAscSolid_IT(ret.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc, false);
|
---|
1673 | // posInArr += dimLen * inc;
|
---|
1674 | // }
|
---|
1675 | //}
|
---|
1676 | return ret;
|
---|
1677 | }
|
---|
1678 | }
|
---|
1679 | /// <summary>
|
---|
1680 | /// Sort data in A along dimension 'dim'
|
---|
1681 | /// </summary>
|
---|
1682 | /// <param name="A">Input array, n-dimensional</param>
|
---|
1683 | /// <param name="descending">Direction of sorting</param>
|
---|
1684 | /// <param name="dim">Dimension index to sort along</param>
|
---|
1685 | /// <param name="Indices">[Output] Returns permutation matrix</param>
|
---|
1686 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1687 | /// <remarks>The data in A will be sorted along the dimension <paramref name="dim"/> using a non-recursive quicksort
|
---|
1688 | /// algorithm.
|
---|
1689 | /// <para><b>Handling of NaN values (for double,float,complex or fcomplex arrays element datatypes only):</b>
|
---|
1690 | /// if the input array contains any NaN values, those elements will be sorted to the end of the array on output.</para>
|
---|
1691 | /// <para>Properties of sorting can be tuned by the settings of <see cref="ILNumerics.Settings.s_maxSafeQuicksortRecursionDepth"/>
|
---|
1692 | /// and <see cref="ILNumerics.Settings.s_minimumQuicksortLength"/>.</para>
|
---|
1693 | /// <para>This overload also returns an array 'Indices' which will hold the indices into the original
|
---|
1694 | /// elements <b>after sorting</b>. Elements of 'Indices' are of type double.</para>
|
---|
1695 | /// <example><code>ILArray<double> A = ILMath.rand(1,5);
|
---|
1696 | /// //A:
|
---|
1697 | /// // 0.4324 0.9231 0.1231 0.1423 0.2991
|
---|
1698 | /// ILArray<double> I;
|
---|
1699 | /// ILArray<double> R = ILMath.sort(A, out I, 1, false);
|
---|
1700 | /// //R:
|
---|
1701 | /// // 0.1231 0.1423 0.2991 0.4324 0.9231
|
---|
1702 | /// //I:
|
---|
1703 | /// // 2 3 4 0 1
|
---|
1704 | /// </code>
|
---|
1705 | /// </example>
|
---|
1706 | /// <para>The quicksort algorithm is an unstable algorithm. Therefore, if in the input array some elements have
|
---|
1707 | /// identical values, their relative order in the output vector is not garanteed to be unchanged.</para>
|
---|
1708 | /// </remarks>
|
---|
1709 | public static ILRetArray< byte> sort( ILInArray< byte> A, ILOutArray<double> Indices = null, int dim = -1, bool descending = false ) {
|
---|
1710 | using (ILScope.Enter(A)) {
|
---|
1711 | if (object.Equals(A, null))
|
---|
1712 | throw new Exception("parameter A must not be null");
|
---|
1713 | if (object.Equals(Indices, null)) {
|
---|
1714 | return sort(A,dim,descending);
|
---|
1715 | }
|
---|
1716 | if (dim >= A.Size.NumberOfDimensions)
|
---|
1717 | throw new ILArgumentException("invalid dimension argument");
|
---|
1718 | // early exit: scalar/ empty
|
---|
1719 | if (A.IsEmpty) {
|
---|
1720 | Indices.a = empty<double>(ILSize.Empty00);
|
---|
1721 | return empty< byte>(ILSize.Empty00);
|
---|
1722 | }
|
---|
1723 | if (A.IsScalar) {
|
---|
1724 | Indices.a = 0;
|
---|
1725 | return A.C;
|
---|
1726 | }
|
---|
1727 | if (dim < 0) {
|
---|
1728 | dim = A.S.WorkingDimension();
|
---|
1729 | }
|
---|
1730 | int[] tmpDims = A.Size.ToIntArray();
|
---|
1731 | for (int i = 0; i < A.Size.NumberOfDimensions; i++) {
|
---|
1732 | if (i == dim)
|
---|
1733 | tmpDims[i] = A.Size[dim];
|
---|
1734 | else
|
---|
1735 | tmpDims[i] = 1;
|
---|
1736 | }
|
---|
1737 | //if (Indices.IsEmpty || !Indices.D.IsSameSize(A.D)) {
|
---|
1738 | Indices.a = reshape(counter(0.0, 1.0, 1, A.Size[dim]), tmpDims);
|
---|
1739 | tmpDims = A.Size.ToIntArray();
|
---|
1740 | tmpDims[dim] = 1;
|
---|
1741 | Indices.a = repmat(Indices, tmpDims);
|
---|
1742 | //}
|
---|
1743 | ILArray<byte> ret = A.C;
|
---|
1744 | int inc = ret.Size.SequentialIndexDistance(dim);
|
---|
1745 | int dimLen = A.Size[dim];
|
---|
1746 | int maxRuns = A.Size.NumberOfElements / dimLen;
|
---|
1747 | int posInArr = 0;
|
---|
1748 | if (descending) {
|
---|
1749 | if (maxRuns == 1) {
|
---|
1750 | ILQuickSort.QuickSortDescIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1751 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1752 | byte [] retArr = ret.GetArrayForWrite();
|
---|
1753 | double[] indArr = Indices.GetArrayForRead();
|
---|
1754 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1755 | (c) => {
|
---|
1756 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements-1);
|
---|
1757 | ILQuickSort.QuickSortDescIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1758 | });
|
---|
1759 | } else {
|
---|
1760 | for (int c = 0; c < maxRuns; c++) {
|
---|
1761 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1762 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1763 | ILQuickSort.QuickSortDescIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1764 | posInArr += dimLen * inc;
|
---|
1765 | }
|
---|
1766 | }
|
---|
1767 | } else {
|
---|
1768 | // ascending
|
---|
1769 | if (maxRuns == 1) {
|
---|
1770 | ILQuickSort.QuickSortAscIDXMT(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1771 | } else if (maxRuns >= 2 && dimLen >= ILNumerics.Settings.s_minParallelElement2Count) {
|
---|
1772 |
|
---|
1773 | byte[] retArr = ret.GetArrayForWrite();
|
---|
1774 | double[] indArr = Indices.GetArrayForRead();
|
---|
1775 | System.Threading.Tasks.Parallel.For(0, maxRuns,
|
---|
1776 | (c) => {
|
---|
1777 | int pos = (dimLen * c * inc) % (A.Size.NumberOfElements - 1);
|
---|
1778 | ILQuickSort.QuickSortAscIDXST(retArr, indArr, pos, pos + (dimLen - 1) * inc, inc);
|
---|
1779 | });
|
---|
1780 | } else {
|
---|
1781 | for (int c = 0; c < maxRuns; c++) {
|
---|
1782 | if (posInArr >= A.Size.NumberOfElements)
|
---|
1783 | posInArr -= (A.Size.NumberOfElements - 1);
|
---|
1784 | ILQuickSort.QuickSortAscIDXST(ret.GetArrayForWrite(), Indices.GetArrayForWrite(), posInArr, posInArr + (dimLen - 1) * inc, inc);
|
---|
1785 | posInArr += dimLen * inc;
|
---|
1786 | }
|
---|
1787 | }
|
---|
1788 | }
|
---|
1789 | return ret;
|
---|
1790 | }
|
---|
1791 | }
|
---|
1792 |
|
---|
1793 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
1794 |
|
---|
1795 | #region bucket sort - string
|
---|
1796 | /// <summary>
|
---|
1797 | /// Sort strings in A along first non singleton dimension ascending
|
---|
1798 | /// </summary>
|
---|
1799 | /// <param name="A">Input array. A may be an empty, scalar, vector or matrix.</param>
|
---|
1800 | /// <returns>Sorted array of the same size/shape as A</returns>
|
---|
1801 | /// <remarks><para>The strings in A will be sorted lexicographically in ascending order using the bucket sort algorithm. Data
|
---|
1802 | /// along the first non singleton dimension will get sorted independently from data
|
---|
1803 | /// in the other rows/columns.</para>
|
---|
1804 | /// <para>The sorting order of strings is determined char-wise by comparing the ASCII codes of the characters.</para></remarks>
|
---|
1805 | public static ILRetArray<string> sort (ILInArray<string> A) {
|
---|
1806 | using (ILScope.Enter(A)) {
|
---|
1807 | int fnsd = A.Size.WorkingDimension();
|
---|
1808 | if (fnsd < 0) return A.C;
|
---|
1809 | return sort(A, fnsd, false);
|
---|
1810 | }
|
---|
1811 | }
|
---|
1812 | /// <summary>
|
---|
1813 | /// Sort strings in A along first non singleton dimension
|
---|
1814 | /// </summary>
|
---|
1815 | /// <param name="A">Input array. A may be an empty, scalar, vector or matrix.</param>
|
---|
1816 | /// <param name="descending">Specifies the direction of sorting: true: descending sort direction; false: ascending</param>
|
---|
1817 | /// <returns>Sorted array of the same size/shape as A</returns>
|
---|
1818 | /// <remarks><para>The strings in A will be sorted lexicographically in ascending order using the bucket sort algorithm. Data
|
---|
1819 | /// along the first non singleton dimension will get sorted independently from data
|
---|
1820 | /// in the other rows/columns.</para>
|
---|
1821 | /// <para>The sorting order of strings is determined char-wise by comparing the ASCII codes of the characters.</para></remarks>
|
---|
1822 | public static ILRetArray<string> sort (ILInArray<string> A, bool descending) {
|
---|
1823 | using (ILScope.Enter(A)) {
|
---|
1824 | int fnsd = A.Size.WorkingDimension();
|
---|
1825 | if (fnsd < 0) return A.C;
|
---|
1826 | return sort(A, fnsd, descending);
|
---|
1827 | }
|
---|
1828 | }
|
---|
1829 | /// <summary>
|
---|
1830 | /// Sort strings in A along dimension 'dim'
|
---|
1831 | /// </summary>
|
---|
1832 | /// <param name="A">Input array. A may be an empty, scalar, vector or matrix.</param>
|
---|
1833 | /// <param name="dim">Dimension to sort along</param>
|
---|
1834 | /// <param name="descending">Specifies the direction of sorting: true: descending sort direction; false: ascending</param>
|
---|
1835 | /// <returns>Sorted array of the same size/shape as A</returns>
|
---|
1836 | /// <remarks><para>The strings in A will be sorted lexicographically in ascending order using the bucket sort algorithm. Data
|
---|
1837 | /// along the first non singleton dimension will get sorted independently from data
|
---|
1838 | /// in the other rows/columns.</para>
|
---|
1839 | /// <para>The sorting order of strings is determined char-wise by comparing the ASCII codes of the characters.</para></remarks>
|
---|
1840 | public static ILRetArray<string> sort (ILInArray<string> A, int dim, bool descending) {
|
---|
1841 | if (object.Equals (A,null))
|
---|
1842 | throw new Exception("parameter A must not be null");
|
---|
1843 | using (ILScope.Enter(A)) {
|
---|
1844 | if (A.Size.NumberOfDimensions > 2)
|
---|
1845 | throw new ILArgumentException("for element type string only matrices are supported!");
|
---|
1846 | if (dim < 0 || dim >= A.Size.NumberOfDimensions)
|
---|
1847 | throw new ILArgumentException("invalid dimension argument");
|
---|
1848 | // early exit: scalar/ empty
|
---|
1849 | if (A.IsEmpty || A.IsScalar)
|
---|
1850 | return A.C;
|
---|
1851 | ILArray<string> ret =zeros<string>(A.Size);
|
---|
1852 | int dim1 = dim % A.Size.NumberOfDimensions;
|
---|
1853 | int dim2 = (dim1 + 1) % A.Size.NumberOfDimensions;
|
---|
1854 | int maxRuns = A.Size[dim2];
|
---|
1855 | ILQueueList<string, byte> ql;
|
---|
1856 | ILArray<int>[] ind = new ILArray<int>[2];
|
---|
1857 | int[] indI = new int[2];
|
---|
1858 | ILASCIIKeyMapper km = new ILASCIIKeyMapper();
|
---|
1859 | for (int c = 0; c < maxRuns; c++) {
|
---|
1860 | ind[dim2] = c;
|
---|
1861 | ind[dim1] = null;
|
---|
1862 | ql = ILBucketSort.BucketSort<string, char, byte>(A[ind], null, km, ILBucketSort.SortMethod.ConstantLength);
|
---|
1863 | indI[dim2] = c;
|
---|
1864 | if (descending) {
|
---|
1865 | for (int i = ql.Count; i-- > 0; ) {
|
---|
1866 | indI[dim1] = i;
|
---|
1867 | ret.SetValue(ql.Dequeue().Data, indI);
|
---|
1868 | }
|
---|
1869 | } else {
|
---|
1870 | for (int i = 0; ql.Count > 0; i++) {
|
---|
1871 | indI[dim1] = i;
|
---|
1872 | ret.SetValue(ql.Dequeue().Data, indI);
|
---|
1873 | }
|
---|
1874 | }
|
---|
1875 | }
|
---|
1876 | return ret;
|
---|
1877 | }
|
---|
1878 | }
|
---|
1879 | /// <summary>
|
---|
1880 | /// Sort data in A along dimension 'dim'
|
---|
1881 | /// </summary>
|
---|
1882 | /// <param name="A">Input array: empty, scalar, vector or matrix</param>
|
---|
1883 | /// <param name="descending">Specifies the direction of sorting</param>
|
---|
1884 | /// <param name="dim">Dimension to sort along</param>
|
---|
1885 | /// <param name="Indices">[Output] Returns permutation matrix also</param>
|
---|
1886 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1887 | /// <remarks><para>The data in A will be sorted using the quick sort algorithm. Data
|
---|
1888 | /// along the dimension <paramref name="dim"/> will get sorted independently from data
|
---|
1889 | /// in the next row/column.</para>
|
---|
1890 | /// <para>This overload also returns an array 'Indices' which will hold the indices into the original
|
---|
1891 | /// elements <b>after sorting</b>. Elements of 'Indices' are of type double.</para>
|
---|
1892 | ///</remarks>
|
---|
1893 | public static ILRetArray<string> sort (ILInArray<string> A, ILOutArray<double> Indices, int dim, bool descending) {
|
---|
1894 | if (object.Equals (A,null))
|
---|
1895 | throw new Exception("parameter A must not be null");
|
---|
1896 | using (ILScope.Enter(A)) {
|
---|
1897 | if (A.Size.NumberOfDimensions > 2)
|
---|
1898 | throw new ILArgumentException("for element type string only matrices are supported!");
|
---|
1899 | if (dim < 0 || dim >= A.Size.NumberOfDimensions)
|
---|
1900 | throw new ILArgumentException("invalid dimension argument");
|
---|
1901 | // early exit: scalar/ empty
|
---|
1902 | if (A.IsEmpty || A.IsScalar) {
|
---|
1903 | Indices.a = 0.0;
|
---|
1904 | return A.C;
|
---|
1905 | }
|
---|
1906 | ILArray<string> ret = zeros<string>(A.Size);
|
---|
1907 | int dim1 = dim % A.Size.NumberOfDimensions;
|
---|
1908 | int dim2 = (dim1 + 1) % A.Size.NumberOfDimensions;
|
---|
1909 | int maxRuns = A.Size[dim2];
|
---|
1910 | ILQueueList<string, double> ql;
|
---|
1911 | ILBaseArray[] ind = new ILBaseArray[2];
|
---|
1912 | int[] indI = new int[2];
|
---|
1913 | ILASCIIKeyMapper km = new ILASCIIKeyMapper();
|
---|
1914 | Indices.a = ILMath.counter<double>(0.0, 1.0, A.Size);
|
---|
1915 | for (int c = 0; c < maxRuns; c++) {
|
---|
1916 | ind[dim2] = (ILArray<int>)c;
|
---|
1917 | ind[dim1] = ILMath.full;
|
---|
1918 | ql = ILBucketSort.BucketSort<string, char, double>(A[ind], Indices[ind], km, ILBucketSort.SortMethod.ConstantLength);
|
---|
1919 | indI[dim2] = c;
|
---|
1920 | if (descending) {
|
---|
1921 | for (int i = ql.Count; i-- > 0; ) {
|
---|
1922 | indI[dim1] = i;
|
---|
1923 | ILListItem<string, double> item = ql.Dequeue();
|
---|
1924 | ret.SetValue(item.Data, indI);
|
---|
1925 | Indices.SetValue(item.m_index, indI);
|
---|
1926 | }
|
---|
1927 | } else {
|
---|
1928 | for (int i = 0; ql.Count > 0; i++) {
|
---|
1929 | indI[dim1] = i;
|
---|
1930 | ILListItem<string, double> item = ql.Dequeue();
|
---|
1931 | ret.SetValue(item.Data, indI);
|
---|
1932 | Indices.SetValue(item.m_index, indI);
|
---|
1933 | }
|
---|
1934 | }
|
---|
1935 | }
|
---|
1936 | return ret;
|
---|
1937 | }
|
---|
1938 | }
|
---|
1939 | /// <summary>
|
---|
1940 | /// Generic sort algorithm in A along dimension 'dim'
|
---|
1941 | /// </summary>
|
---|
1942 | /// <param name="A">Input array: empty, scalar, vector or matrix</param>
|
---|
1943 | /// <param name="descending">Specifies the direction of sorting</param>
|
---|
1944 | /// <param name="dim">Dimension to sort along</param>
|
---|
1945 | /// <param name="Indices">[Input/Output] The values in Indices will be returned in the same sorted order as the elements
|
---|
1946 | /// in A. This can be used to derive a permutation matrix of the sorting process.</param>
|
---|
1947 | /// <typeparam name="T">Element type of values of A</typeparam>
|
---|
1948 | /// <typeparam name="S">Subelement type. For element type of string this would be 'char'</typeparam>
|
---|
1949 | /// <typeparam name="I">Element type of indices</typeparam>
|
---|
1950 | /// <param name="keymapper">Instancce of an object of type ILKeyMapper. This object must
|
---|
1951 | /// be derived from ILKeyMapper<T,SubelementType> and match the generic argument <typeparamref name="T"/>. It will be
|
---|
1952 | /// used to split single elements into its subelements and map their content into bucket numbers. For all
|
---|
1953 | /// reference types except those of type string you will have to write your own ILKeyMapper class for that purpose.</param>
|
---|
1954 | /// <returns>Sorted array of the same size as A</returns>
|
---|
1955 | /// <remarks><para>The data in A will be sorted using the quick sort algorithm. Data
|
---|
1956 | /// along the dimension <paramref name="dim"/> will therefore get sorted independently from data
|
---|
1957 | /// in the next row/column.</para>
|
---|
1958 | /// <para>This overload also returns an array 'Indices' which will hold the indices into the original
|
---|
1959 | /// elements <b>after sorting</b>. Therefore, the unsorted indices must be provided by the user on entry. Indices must not be null.</para>
|
---|
1960 | /// <para>This generic version is able to sort arbitrary element types. Even user defined reference types can be sorted
|
---|
1961 | /// by specifying a user defined ILKeyMapper class instance. Also the type of Indices may be arbitrarily choosen. In difference
|
---|
1962 | /// to the regular sort function overload, Indices must manually be given to the function on entry. Elements in 'Indices'
|
---|
1963 | /// are sorted in the same order as the elements of A.</para>
|
---|
1964 | /// <para>By using this overload you may use the same permutation matrix several times to reflect the
|
---|
1965 | /// manipulations done to A due multiple sort processes. The Indices given will directly be used for the sorting
|
---|
1966 | /// disregarding initial order.</para>
|
---|
1967 | /// </remarks>
|
---|
1968 | internal static ILRetArray<T> sort<T, S, I>( ILInArray<T> A, ILOutArray<I> Indices, int dim, bool descending, ILKeyMapper<T, S> keymapper ) {
|
---|
1969 | if (object.Equals(A, null))
|
---|
1970 | throw new Exception("parameter A must not be null");
|
---|
1971 | if (object.Equals(Indices, null))
|
---|
1972 | throw new Exception("parameter 'Indices' must not be null");
|
---|
1973 | using (ILScope.Enter(A)) {
|
---|
1974 | if (!A.IsMatrix)
|
---|
1975 | throw new ILArgumentException("for generic element type - only matrices are supported");
|
---|
1976 | if (dim < 0 || dim >= A.Size.NumberOfDimensions)
|
---|
1977 | throw new ILArgumentException("invalid dimension argument");
|
---|
1978 | if (keymapper == null)
|
---|
1979 | throw new ILArgumentException("the keymapper argument must not be null");
|
---|
1980 | if (object.Equals(Indices, null) || !Indices.Size.IsSameSize(A.Size))
|
---|
1981 | throw new ILArgumentException("indices argument must have same size/shape as input A");
|
---|
1982 | // early exit: scalar/ empty
|
---|
1983 | if (A.IsEmpty || A.IsScalar) {
|
---|
1984 | Indices.a = default(I);
|
---|
1985 | return A.C;
|
---|
1986 | }
|
---|
1987 | ILArray<T> ret = zeros<T>(A.Size);
|
---|
1988 | int dim1 = dim % A.Size.NumberOfDimensions;
|
---|
1989 | int dim2 = (dim1 + 1) % A.Size.NumberOfDimensions;
|
---|
1990 | int maxRuns = A.Size[dim2];
|
---|
1991 | ILQueueList<T, I> ql;
|
---|
1992 | ILBaseArray[] ind = new ILBaseArray[2];
|
---|
1993 | int[] indI = new int[2];
|
---|
1994 | for (int c = 0; c < maxRuns; c++) {
|
---|
1995 | ind[dim2] = (ILArray<int>)c;
|
---|
1996 | ind[dim1] = full;
|
---|
1997 | ql = ILBucketSort.BucketSort<T, S, I>(A[ind], Indices[ind], keymapper, ILBucketSort.SortMethod.ConstantLength);
|
---|
1998 | indI[dim2] = c;
|
---|
1999 | if (descending) {
|
---|
2000 | for (int i = ql.Count; i-- > 0; ) {
|
---|
2001 | indI[dim1] = i;
|
---|
2002 | ILListItem<T, I> item = ql.Dequeue();
|
---|
2003 | ret.SetValue(item.Data, indI);
|
---|
2004 | Indices.SetValue(item.m_index, indI);
|
---|
2005 | }
|
---|
2006 | } else {
|
---|
2007 | for (int i = 0; ql.Count > 0; i++) {
|
---|
2008 | indI[dim1] = i;
|
---|
2009 | ILListItem<T, I> item = ql.Dequeue();
|
---|
2010 | ret.SetValue(item.Data, indI);
|
---|
2011 | Indices.SetValue(item.m_index, indI);
|
---|
2012 | }
|
---|
2013 | }
|
---|
2014 | }
|
---|
2015 | return ret;
|
---|
2016 | }
|
---|
2017 | }
|
---|
2018 | #endregion
|
---|
2019 |
|
---|
2020 |
|
---|
2021 | internal static bool IsSorted (double[] vec,int length, bool descending) {
|
---|
2022 | if (descending) {
|
---|
2023 | for (int i = 1; i < length; i++) {
|
---|
2024 | if (vec[i] > vec[i-1])
|
---|
2025 | return false;
|
---|
2026 | }
|
---|
2027 | } else {
|
---|
2028 | for (int i = 1; i < length; i++) {
|
---|
2029 | if (vec[i] < vec[i-1])
|
---|
2030 | return false;
|
---|
2031 | }
|
---|
2032 | }
|
---|
2033 | return true;
|
---|
2034 | }
|
---|
2035 |
|
---|
2036 | }
|
---|
2037 | }
|
---|