1 | ///
|
---|
2 | /// This file is part of ILNumerics Community Edition.
|
---|
3 | ///
|
---|
4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
6 | ///
|
---|
7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
9 | /// the Free Software Foundation.
|
---|
10 | ///
|
---|
11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | /// GNU General Public License for more details.
|
---|
15 | ///
|
---|
16 | /// You should have received a copy of the GNU General Public License
|
---|
17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | ///
|
---|
20 | /// In addition this software uses the following components and/or licenses:
|
---|
21 | ///
|
---|
22 | /// =================================================================================
|
---|
23 | /// The Open Toolkit Library License
|
---|
24 | ///
|
---|
25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
26 | ///
|
---|
27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
29 | /// in the Software without restriction, including without limitation the rights to
|
---|
30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
32 | /// so, subject to the following conditions:
|
---|
33 | ///
|
---|
34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
35 | /// copies or substantial portions of the Software.
|
---|
36 | ///
|
---|
37 | /// =================================================================================
|
---|
38 | ///
|
---|
39 |
|
---|
40 | using System;
|
---|
41 | using System.Collections.Generic;
|
---|
42 | using System.Text;
|
---|
43 | using ILNumerics.Storage;
|
---|
44 | using ILNumerics.Misc;
|
---|
45 | using ILNumerics.Exceptions;
|
---|
46 |
|
---|
47 | namespace ILNumerics {
|
---|
48 | public partial class ILMath {
|
---|
49 |
|
---|
50 | |
---|
51 |
|
---|
52 |
|
---|
53 | /// <summary>
|
---|
54 | /// Rank of matrix A
|
---|
55 | /// </summary>
|
---|
56 | /// <param name="A">Input matrix</param>
|
---|
57 | /// <param name="tolerance">[Optional]Tolerance used to decide, if a singular value is
|
---|
58 | /// treated as zero. If a value < 0 is specified the tolerance will be determined automatically (see below - default = -1.0)</param>
|
---|
59 | /// <returns>Rank of matrix A</returns>
|
---|
60 | /// <remarks>The rank is the number of singular values greater than
|
---|
61 | /// tolerance. If tolerance is smaller than zero, the following equation is used as
|
---|
62 | /// default: \\
|
---|
63 | /// tol = length(A) * norm(A) * MachineParameterDouble.epsilon \\
|
---|
64 | /// with
|
---|
65 | /// <list type="bullet">
|
---|
66 | /// <item>length(A) - the longest dimension of A</item>
|
---|
67 | /// <item>norm(A) being the largest singular value of A, </item>
|
---|
68 | /// <item>MachineParameterDouble.eps - the distance between 1 and the smallest next greater value</item>
|
---|
69 | /// </list>
|
---|
70 | /// </remarks>
|
---|
71 | public static ILRetArray< double> rank( ILInArray< double> A, double tolerance = -1.0 ) {
|
---|
72 | using (ILScope.Enter(A)) {
|
---|
73 | if (A.Size.NumberOfDimensions > 2)
|
---|
74 | throw new ILArgumentSizeException("The input array must be matrix or vector");
|
---|
75 | ILArray< double> ret = svd(A);
|
---|
76 | if (tolerance < 0) {
|
---|
77 | tolerance = A.Size.Longest * max(ret).GetValue(0) * MachineParameterDouble.eps;
|
---|
78 | }
|
---|
79 | // count vector elements: ret is vector returned from svd
|
---|
80 | return find(ret > ( double)tolerance).Length;
|
---|
81 | }
|
---|
82 | }
|
---|
83 | |
---|
84 | #region HYCALPER AUTO GENERATED CODE
|
---|
85 | |
---|
86 |
|
---|
87 |
|
---|
88 | /// <summary>
|
---|
89 | /// Rank of matrix A
|
---|
90 | /// </summary>
|
---|
91 | /// <param name="A">Input matrix</param>
|
---|
92 | /// <param name="tolerance">[Optional]Tolerance used to decide, if a singular value is
|
---|
93 | /// treated as zero. If a value < 0 is specified the tolerance will be determined automatically (see below - default = -1.0)</param>
|
---|
94 | /// <returns>Rank of matrix A</returns>
|
---|
95 | /// <remarks>The rank is the number of singular values greater than
|
---|
96 | /// tolerance. If tolerance is smaller than zero, the following equation is used as
|
---|
97 | /// default: \\
|
---|
98 | /// tol = length(A) * norm(A) * MachineParameterDouble.epsilon \\
|
---|
99 | /// with
|
---|
100 | /// <list type="bullet">
|
---|
101 | /// <item>length(A) - the longest dimension of A</item>
|
---|
102 | /// <item>norm(A) being the largest singular value of A, </item>
|
---|
103 | /// <item>MachineParameterDouble.eps - the distance between 1 and the smallest next greater value</item>
|
---|
104 | /// </list>
|
---|
105 | /// </remarks>
|
---|
106 | public static ILRetArray< float> rank( ILInArray< fcomplex> A, double tolerance = -1.0 ) {
|
---|
107 | using (ILScope.Enter(A)) {
|
---|
108 | if (A.Size.NumberOfDimensions > 2)
|
---|
109 | throw new ILArgumentSizeException("The input array must be matrix or vector");
|
---|
110 | ILArray< float> ret = svd(A);
|
---|
111 | if (tolerance < 0) {
|
---|
112 | tolerance = A.Size.Longest * max(ret).GetValue(0) * MachineParameterSingle.eps;
|
---|
113 | }
|
---|
114 | // count vector elements: ret is vector returned from svd
|
---|
115 | return find(ret > ( float)tolerance).Length;
|
---|
116 | }
|
---|
117 | }
|
---|
118 |
|
---|
119 |
|
---|
120 | /// <summary>
|
---|
121 | /// Rank of matrix A
|
---|
122 | /// </summary>
|
---|
123 | /// <param name="A">Input matrix</param>
|
---|
124 | /// <param name="tolerance">[Optional]Tolerance used to decide, if a singular value is
|
---|
125 | /// treated as zero. If a value < 0 is specified the tolerance will be determined automatically (see below - default = -1.0)</param>
|
---|
126 | /// <returns>Rank of matrix A</returns>
|
---|
127 | /// <remarks>The rank is the number of singular values greater than
|
---|
128 | /// tolerance. If tolerance is smaller than zero, the following equation is used as
|
---|
129 | /// default: \\
|
---|
130 | /// tol = length(A) * norm(A) * MachineParameterDouble.epsilon \\
|
---|
131 | /// with
|
---|
132 | /// <list type="bullet">
|
---|
133 | /// <item>length(A) - the longest dimension of A</item>
|
---|
134 | /// <item>norm(A) being the largest singular value of A, </item>
|
---|
135 | /// <item>MachineParameterDouble.eps - the distance between 1 and the smallest next greater value</item>
|
---|
136 | /// </list>
|
---|
137 | /// </remarks>
|
---|
138 | public static ILRetArray< float> rank( ILInArray< float> A, double tolerance = -1.0 ) {
|
---|
139 | using (ILScope.Enter(A)) {
|
---|
140 | if (A.Size.NumberOfDimensions > 2)
|
---|
141 | throw new ILArgumentSizeException("The input array must be matrix or vector");
|
---|
142 | ILArray< float> ret = svd(A);
|
---|
143 | if (tolerance < 0) {
|
---|
144 | tolerance = A.Size.Longest * max(ret).GetValue(0) * MachineParameterSingle.eps;
|
---|
145 | }
|
---|
146 | // count vector elements: ret is vector returned from svd
|
---|
147 | return find(ret > ( float)tolerance).Length;
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 |
|
---|
152 | /// <summary>
|
---|
153 | /// Rank of matrix A
|
---|
154 | /// </summary>
|
---|
155 | /// <param name="A">Input matrix</param>
|
---|
156 | /// <param name="tolerance">[Optional]Tolerance used to decide, if a singular value is
|
---|
157 | /// treated as zero. If a value < 0 is specified the tolerance will be determined automatically (see below - default = -1.0)</param>
|
---|
158 | /// <returns>Rank of matrix A</returns>
|
---|
159 | /// <remarks>The rank is the number of singular values greater than
|
---|
160 | /// tolerance. If tolerance is smaller than zero, the following equation is used as
|
---|
161 | /// default: \\
|
---|
162 | /// tol = length(A) * norm(A) * MachineParameterDouble.epsilon \\
|
---|
163 | /// with
|
---|
164 | /// <list type="bullet">
|
---|
165 | /// <item>length(A) - the longest dimension of A</item>
|
---|
166 | /// <item>norm(A) being the largest singular value of A, </item>
|
---|
167 | /// <item>MachineParameterDouble.eps - the distance between 1 and the smallest next greater value</item>
|
---|
168 | /// </list>
|
---|
169 | /// </remarks>
|
---|
170 | public static ILRetArray< double> rank( ILInArray< complex> A, double tolerance = -1.0 ) {
|
---|
171 | using (ILScope.Enter(A)) {
|
---|
172 | if (A.Size.NumberOfDimensions > 2)
|
---|
173 | throw new ILArgumentSizeException("The input array must be matrix or vector");
|
---|
174 | ILArray< double> ret = svd(A);
|
---|
175 | if (tolerance < 0) {
|
---|
176 | tolerance = A.Size.Longest * max(ret).GetValue(0) * MachineParameterDouble.eps;
|
---|
177 | }
|
---|
178 | // count vector elements: ret is vector returned from svd
|
---|
179 | return find(ret > ( double)tolerance).Length;
|
---|
180 | }
|
---|
181 | }
|
---|
182 |
|
---|
183 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
184 |
|
---|
185 | }
|
---|
186 | }
|
---|