[9102] | 1 | ///
|
---|
| 2 | /// This file is part of ILNumerics Community Edition.
|
---|
| 3 | ///
|
---|
| 4 | /// ILNumerics Community Edition - high performance computing for applications.
|
---|
| 5 | /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
|
---|
| 6 | ///
|
---|
| 7 | /// ILNumerics Community Edition is free software: you can redistribute it and/or modify
|
---|
| 8 | /// it under the terms of the GNU General Public License version 3 as published by
|
---|
| 9 | /// the Free Software Foundation.
|
---|
| 10 | ///
|
---|
| 11 | /// ILNumerics Community Edition is distributed in the hope that it will be useful,
|
---|
| 12 | /// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | /// GNU General Public License for more details.
|
---|
| 15 | ///
|
---|
| 16 | /// You should have received a copy of the GNU General Public License
|
---|
| 17 | /// along with ILNumerics Community Edition. See the file License.txt in the root
|
---|
| 18 | /// of your distribution package. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | ///
|
---|
| 20 | /// In addition this software uses the following components and/or licenses:
|
---|
| 21 | ///
|
---|
| 22 | /// =================================================================================
|
---|
| 23 | /// The Open Toolkit Library License
|
---|
| 24 | ///
|
---|
| 25 | /// Copyright (c) 2006 - 2009 the Open Toolkit library.
|
---|
| 26 | ///
|
---|
| 27 | /// Permission is hereby granted, free of charge, to any person obtaining a copy
|
---|
| 28 | /// of this software and associated documentation files (the "Software"), to deal
|
---|
| 29 | /// in the Software without restriction, including without limitation the rights to
|
---|
| 30 | /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
---|
| 31 | /// the Software, and to permit persons to whom the Software is furnished to do
|
---|
| 32 | /// so, subject to the following conditions:
|
---|
| 33 | ///
|
---|
| 34 | /// The above copyright notice and this permission notice shall be included in all
|
---|
| 35 | /// copies or substantial portions of the Software.
|
---|
| 36 | ///
|
---|
| 37 | /// =================================================================================
|
---|
| 38 | ///
|
---|
| 39 |
|
---|
| 40 | using System;
|
---|
| 41 | using System.Collections.Generic;
|
---|
| 42 | using System.Text;
|
---|
| 43 | using ILNumerics.Storage;
|
---|
| 44 | using ILNumerics.Misc;
|
---|
| 45 | using ILNumerics.Exceptions;
|
---|
| 46 |
|
---|
| 47 |
|
---|
| 48 |
|
---|
| 49 | namespace ILNumerics {
|
---|
| 50 | public partial class ILMath {
|
---|
| 51 |
|
---|
| 52 | |
---|
| 53 | /// <summary>
|
---|
| 54 | /// QR decomposition - raw Lapack output
|
---|
| 55 | /// </summary>
|
---|
| 56 | /// <param name="A">Input matrix A</param>
|
---|
| 57 | /// <returns>Orthonormal / unitary matrix Q and upper triangular
|
---|
| 58 | /// matrix R packed into single matrix. This is the output of the
|
---|
| 59 | /// lapack function ?geqrf.</returns>
|
---|
| 60 | /// <remarks><para>Input matrix A will not be altered. </para>
|
---|
| 61 | /// <para>The matrix returned is the direct output of the lapack
|
---|
| 62 | /// function [d,s,c,z]geqrf respectively. This means that it contains
|
---|
| 63 | /// the decomposition factors Q and R, but they are combined into a
|
---|
| 64 | /// single matrix for performance reasons. If you need one of the factors,
|
---|
| 65 | /// you would use the overloaded function
|
---|
| 66 | /// <see cref="ILNumerics.ILMath.qr(ILInArray{double},ILOutArray{double})"/>
|
---|
| 67 | /// instead, which returns those factors separately.</para></remarks>
|
---|
| 68 | internal static ILRetArray<double> qr( ILInArray<double> A ) {
|
---|
| 69 | using (ILScope.Enter(A)) {
|
---|
| 70 | if (!A.IsMatrix)
|
---|
| 71 | throw new ILArgumentException("input A must be matrix");
|
---|
| 72 | int m = A.Size[0], n = A.Size[1];
|
---|
| 73 | ILArray<double> ret = A.C;
|
---|
| 74 | double[] tau = ILMemoryPool.Pool.New< double>((m < n) ? m : n);
|
---|
| 75 | int info = 0;
|
---|
| 76 | /*!HC:lapack_*geqrf*/
|
---|
| 77 | Lapack.dgeqrf(m, n, ret.GetArrayForWrite(), m, tau, ref info);
|
---|
| 78 | if (info < 0)
|
---|
| 79 | throw new ILArgumentException("an unknown error occoured during decomposition");
|
---|
| 80 | return ret;
|
---|
| 81 | }
|
---|
| 82 | }
|
---|
| 83 | /// <summary>
|
---|
| 84 | /// QR decomposition, returning Q and R
|
---|
| 85 | /// </summary>
|
---|
| 86 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 87 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 88 | /// result of decomposition, size [m x n]</param>
|
---|
| 89 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition, size [m x m]</returns>
|
---|
| 90 | /// <remarks>The function returns Q and R such that the equation
|
---|
| 91 | /// <para>A = Q * R</para> holds within roundoff errors. ('*' denotes
|
---|
| 92 | /// matrix multiplication)</remarks>
|
---|
| 93 | public static ILRetArray<double> qr(
|
---|
| 94 | ILInArray<double> A,
|
---|
| 95 | ILOutArray<double> outR ) {
|
---|
| 96 | return qr(A, outR, false);
|
---|
| 97 | }
|
---|
| 98 | /// <summary>
|
---|
| 99 | /// QR decomposition, returning Q and R, optionally economical sized
|
---|
| 100 | /// </summary>
|
---|
| 101 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 102 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 103 | /// result of decomposition, size [m x n]</param>
|
---|
| 104 | /// <param name="economySize">If true, the size of Q and R will
|
---|
| 105 | /// be [m x m] and [m x n] respectively. However, if m < n,
|
---|
| 106 | /// the economySize parameter has no effect. </param>
|
---|
| 107 | /// <returns>Orthonormal real / unitary complex matrix Q as result
|
---|
| 108 | /// of decomposition. Size [m x m] or [m x min(m,n)], depending
|
---|
| 109 | /// on <paramref name="economySize"/> (see remarks below)</returns>
|
---|
| 110 | /// <remarks>The function returns Q and R such that the equation
|
---|
| 111 | /// <para>A = Q * R</para> holds with roundoff errors. ('*'
|
---|
| 112 | /// denotes matrix multiplication.)</remarks>
|
---|
| 113 | public static ILRetArray<double> qr( ILInArray<double> A
|
---|
| 114 | , ILOutArray<double> outR, bool economySize ) {
|
---|
| 115 | using (ILScope.Enter(A)) {
|
---|
| 116 | if (Object.Equals(outR, null)) {
|
---|
| 117 | return qr(A);
|
---|
| 118 | }
|
---|
| 119 | int m = A.Size[0];
|
---|
| 120 | int n = A.Size[1];
|
---|
| 121 | if (m < n && economySize) return qr(A, outR, false);
|
---|
| 122 | ILArray<double> ret = empty<double>(ILSize.Empty00);
|
---|
| 123 | if (m == 0 || n == 0) {
|
---|
| 124 | if (!object.Equals(outR,null))
|
---|
| 125 | outR.a = empty<double>(new ILSize(m, n));
|
---|
| 126 | return empty<double>(A.Size);
|
---|
| 127 | }
|
---|
| 128 | int minMN = (m < n) ? m : n;
|
---|
| 129 | int info = 0;
|
---|
| 130 | double[] tau = ILMemoryPool.Pool.New< double>(minMN);
|
---|
| 131 | if (m >= n) {
|
---|
| 132 | ret.a = zeros<double>(m, (economySize) ? minMN : m);
|
---|
| 133 | } else {
|
---|
| 134 | // economySize is always false ... !
|
---|
| 135 | // a temporary array is needed for extraction of the compact lapack Q (?geqrf)
|
---|
| 136 | ret.a = zeros<double>(m, n);
|
---|
| 137 | }
|
---|
| 138 | ret[full, r(0, n - 1)] = A[full, full];
|
---|
| 139 | double[] QArr = ret.GetArrayForWrite();
|
---|
| 140 | /*!HC:lapack_*geqrf*/
|
---|
| 141 | Lapack.dgeqrf(m, n, QArr, m, tau, ref info);
|
---|
| 142 | if (info != 0) {
|
---|
| 143 | throw new ILArgumentException("error inside lapack library (?geqrf). info=" + info.ToString());
|
---|
| 144 | }
|
---|
| 145 | // extract R, Q
|
---|
| 146 | if (economySize) {
|
---|
| 147 | outR.a = copyUpperTriangle(QArr, m, n, minMN);
|
---|
| 148 | /*!HC:lapack_*orgqr*/
|
---|
| 149 | Lapack.dorgqr(m, minMN, minMN, QArr, m, tau, ref info);
|
---|
| 150 | } else {
|
---|
| 151 | outR.a = copyUpperTriangle(QArr, m, n, m);
|
---|
| 152 | /*!HC:lapack_*orgqr*/
|
---|
| 153 | Lapack.dorgqr(m, m, minMN, QArr, m, tau, ref info);
|
---|
| 154 | if (m < n)
|
---|
| 155 | ret.a = ret[full,r(0,m - 1)];
|
---|
| 156 | }
|
---|
| 157 | if (info != 0)
|
---|
| 158 | throw new ILArgumentException("error in lapack library (???gqr). info=" + info.ToString());
|
---|
| 159 | return ret;
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | /// <summary>
|
---|
| 163 | /// QR decomposition with pivoting
|
---|
| 164 | /// </summary>
|
---|
| 165 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 166 | /// <param name="outR">[Output] Upper triangular matrix
|
---|
| 167 | /// R as result of decomposition. Size [m x n] or [min(m,n) x n]
|
---|
| 168 | /// (see remarks). </param>
|
---|
| 169 | /// <param name="outE">[Output] Permutation matrix from pivoting. Size [m x m]</param>
|
---|
| 170 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition.
|
---|
| 171 | /// Size [m x min(m,n)]</returns>
|
---|
| 172 | /// <remarks>The function returns Q, R and E such that the equation
|
---|
| 173 | /// <para>A * E = Q * R</para> holds with roundoff errors, where '*'
|
---|
| 174 | /// denotes matrix multiplication. E reflects the pivoting done
|
---|
| 175 | /// inside LAPACK in order to give R increasingly diagonal elements.</remarks>
|
---|
| 176 | /// <seealso cref="ILNumerics.ILMath.qr(ILInArray{double}, ILOutArray{double}, ILOutArray{double},bool)"/>
|
---|
| 177 | public static ILRetArray<double> qr(
|
---|
| 178 | ILInArray<double> A,
|
---|
| 179 | ILOutArray< double> outR,
|
---|
| 180 | ILOutArray< double> outE ) {
|
---|
| 181 | return qr(A, outR, outE, false);
|
---|
| 182 | }
|
---|
| 183 | /// <summary>
|
---|
| 184 | /// QR decomposition with pivoting, possibly economical sized
|
---|
| 185 | /// </summary>
|
---|
| 186 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 187 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 188 | /// result of decomposition. Size [m x n] or [min(m,n) x n] depending
|
---|
| 189 | /// on <paramref name="economySize"/> (see remarks).</param>
|
---|
| 190 | /// <param name="economySize"><para>If true, <list type="bullet">
|
---|
| 191 | /// <item>the size of Q and R will be [m x m] and [m x n] respectively.
|
---|
| 192 | /// However, if m < n, the economySize parameter has no effect on
|
---|
| 193 | /// those sizes.</item>
|
---|
| 194 | /// <item>the output parameter E will be returned as row permutation
|
---|
| 195 | /// vector rather than as permutation matrix</item></list></para>
|
---|
| 196 | /// <para>If false, this function acts exactly as its overload
|
---|
| 197 | /// <see cref="ILNumerics.ILMath.qr(ILInArray{double}, ILOutArray{double}, ILOutArray{double})"/></para>
|
---|
| 198 | /// </param>
|
---|
| 199 | /// <param name="outE">[Output] Permutation matrix from pivoting. Size [m x m].
|
---|
| 200 | /// If this is not null, the permutation matrix/ vector E will be returned.
|
---|
| 201 | /// <para>E is of size [n x n], if <paramref name="economySize"/> is
|
---|
| 202 | /// true, a row vector of length n otherwise</para></param>
|
---|
| 203 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition.
|
---|
| 204 | /// Size [m x m] or [m x min(m,n)], depending on <paramref name="economySize"/>
|
---|
| 205 | /// (see remarks below)</returns>
|
---|
| 206 | /// <remarks><para> If <paramref name="economySize"/> is false, the function
|
---|
| 207 | /// returns Q, R and E such that the equation A * E = Q * R holds within
|
---|
| 208 | /// roundoff errors. </para>
|
---|
| 209 | /// <para>If <paramref name="economySize"/> is true, E will be a permutation
|
---|
| 210 | /// vector and the equation A[":",E] == Q * R holds (except roundoff).</para>
|
---|
| 211 | /// <para>E reflects the pivoting of A done inside LAPACK in order to give R
|
---|
| 212 | /// increasingly diagonal elements.</para></remarks>
|
---|
| 213 | public static ILRetArray<double> qr(
|
---|
| 214 | ILInArray< double> A,
|
---|
| 215 | ILOutArray< double> outR,
|
---|
| 216 | ILOutArray< double> outE,
|
---|
| 217 | bool economySize ) {
|
---|
| 218 | using (ILScope.Enter(A)) {
|
---|
| 219 | if (Object.Equals(outR, null)) {
|
---|
| 220 | return qr(A);
|
---|
| 221 | }
|
---|
| 222 | int m = A.Size[0];
|
---|
| 223 | int n = A.Size[1];
|
---|
| 224 | if (m < n && economySize) return qr(A, outR, false);
|
---|
| 225 | if (m == 0 || n == 0) {
|
---|
| 226 | if (!object.Equals(outR,null))
|
---|
| 227 | outR.a = zeros< double>(m, n);
|
---|
| 228 | if (!object.Equals(outE,null))
|
---|
| 229 | outE.a = zeros< double>(1, 0);
|
---|
| 230 | return empty<double>(A.Size);
|
---|
| 231 | }
|
---|
| 232 | // prepare IPVT
|
---|
| 233 | if (object.Equals(outE, null))
|
---|
| 234 | return qr(A, outR, economySize);
|
---|
| 235 | if (!economySize) {
|
---|
| 236 | outE.a = zeros< double>( n, n);
|
---|
| 237 | } else {
|
---|
| 238 | outE.a = zeros< double>( 1, n);
|
---|
| 239 | }
|
---|
| 240 | int[] ipvt = ILMemoryPool.Pool.New<int>(n);
|
---|
| 241 | int minMN = (m < n) ? m : n;
|
---|
| 242 | int info = 0;
|
---|
| 243 | double[] tau = ILMemoryPool.Pool.New< double>(minMN);
|
---|
| 244 | double[] QArr;
|
---|
| 245 | ILArray<double> ret;
|
---|
| 246 | if (m >= n) {
|
---|
| 247 | ret = zeros<double>(m, (economySize) ? minMN : m);
|
---|
| 248 | } else {
|
---|
| 249 | // economySize is always false ... !
|
---|
| 250 | // a temporary array is needed for extraction of the compact lapack Q (?geqrf)
|
---|
| 251 | ret = zeros<double>( m, n);
|
---|
| 252 | }
|
---|
| 253 | ret[full,r(0,n-1)] = A[full,full];
|
---|
| 254 | QArr = ret.GetArrayForWrite();
|
---|
| 255 | /*!HC:lapack_*geqp3*/
|
---|
| 256 | Lapack.dgeqp3(m, n, QArr, m, ipvt, tau, ref info);
|
---|
| 257 | if (info != 0) {
|
---|
| 258 | throw new ILArgumentException("error inside lapack library (?geqrf). info=" + info.ToString());
|
---|
| 259 | }
|
---|
| 260 | // extract R, Q
|
---|
| 261 | double[] eArr = outE.GetArrayForWrite();
|
---|
| 262 | if (economySize) {
|
---|
| 263 | outR.a = copyUpperTriangle(QArr, m, n, minMN);
|
---|
| 264 | /*!HC:lapack_*orgqr*/
|
---|
| 265 | Lapack.dorgqr(m, minMN, minMN, QArr, m, tau, ref info);
|
---|
| 266 | // transform E into out typed vector
|
---|
| 267 | for (int i = 0; i < n; i++) {
|
---|
| 268 | eArr[i] = ipvt[i] - 1;
|
---|
| 269 | }
|
---|
| 270 | } else {
|
---|
| 271 | outR.a = copyUpperTriangle(QArr, m, n, m);
|
---|
| 272 | /*!HC:lapack_*orgqr*/
|
---|
| 273 | Lapack.dorgqr(m, m, minMN, QArr, m, tau, ref info);
|
---|
| 274 | if (m < n)
|
---|
| 275 | ret.a = ret[full,r(0,m - 1)];
|
---|
| 276 | // transform E into matrix
|
---|
| 277 | for (int i = 0; i < n; i++) {
|
---|
| 278 | eArr[(ipvt[i] - 1) + n * i] = 1.0;
|
---|
| 279 | }
|
---|
| 280 | }
|
---|
| 281 | if (info != 0)
|
---|
| 282 | throw new ILArgumentException("error in lapack library (???gqr). info=" + info.ToString());
|
---|
| 283 | return ret;
|
---|
| 284 | }
|
---|
| 285 | }
|
---|
| 286 |
|
---|
| 287 | |
---|
| 288 | #region HYCALPER AUTO GENERATED CODE
|
---|
| 289 | |
---|
| 290 | /// <summary>
|
---|
| 291 | /// QR decomposition - raw Lapack output
|
---|
| 292 | /// </summary>
|
---|
| 293 | /// <param name="A">Input matrix A</param>
|
---|
| 294 | /// <returns>Orthonormal / unitary matrix Q and upper triangular
|
---|
| 295 | /// matrix R packed into single matrix. This is the output of the
|
---|
| 296 | /// lapack function ?geqrf.</returns>
|
---|
| 297 | /// <remarks><para>Input matrix A will not be altered. </para>
|
---|
| 298 | /// <para>The matrix returned is the direct output of the lapack
|
---|
| 299 | /// function [d,s,c,z]geqrf respectively. This means that it contains
|
---|
| 300 | /// the decomposition factors Q and R, but they are combined into a
|
---|
| 301 | /// single matrix for performance reasons. If you need one of the factors,
|
---|
| 302 | /// you would use the overloaded function
|
---|
| 303 | /// <see cref="ILNumerics.ILMath.qr(ILInArray{double},ILOutArray{double})"/>
|
---|
| 304 | /// instead, which returns those factors separately.</para></remarks>
|
---|
| 305 | internal static ILRetArray<float> qr( ILInArray<float> A ) {
|
---|
| 306 | using (ILScope.Enter(A)) {
|
---|
| 307 | if (!A.IsMatrix)
|
---|
| 308 | throw new ILArgumentException("input A must be matrix");
|
---|
| 309 | int m = A.Size[0], n = A.Size[1];
|
---|
| 310 | ILArray<float> ret = A.C;
|
---|
| 311 | float[] tau = ILMemoryPool.Pool.New< float>((m < n) ? m : n);
|
---|
| 312 | int info = 0;
|
---|
| 313 |
|
---|
| 314 | Lapack.sgeqrf(m, n, ret.GetArrayForWrite(), m, tau, ref info);
|
---|
| 315 | if (info < 0)
|
---|
| 316 | throw new ILArgumentException("an unknown error occoured during decomposition");
|
---|
| 317 | return ret;
|
---|
| 318 | }
|
---|
| 319 | }
|
---|
| 320 | /// <summary>
|
---|
| 321 | /// QR decomposition, returning Q and R
|
---|
| 322 | /// </summary>
|
---|
| 323 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 324 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 325 | /// result of decomposition, size [m x n]</param>
|
---|
| 326 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition, size [m x m]</returns>
|
---|
| 327 | /// <remarks>The function returns Q and R such that the equation
|
---|
| 328 | /// <para>A = Q * R</para> holds within roundoff errors. ('*' denotes
|
---|
| 329 | /// matrix multiplication)</remarks>
|
---|
| 330 | public static ILRetArray<float> qr(
|
---|
| 331 | ILInArray<float> A,
|
---|
| 332 | ILOutArray<float> outR ) {
|
---|
| 333 | return qr(A, outR, false);
|
---|
| 334 | }
|
---|
| 335 | /// <summary>
|
---|
| 336 | /// QR decomposition, returning Q and R, optionally economical sized
|
---|
| 337 | /// </summary>
|
---|
| 338 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 339 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 340 | /// result of decomposition, size [m x n]</param>
|
---|
| 341 | /// <param name="economySize">If true, the size of Q and R will
|
---|
| 342 | /// be [m x m] and [m x n] respectively. However, if m < n,
|
---|
| 343 | /// the economySize parameter has no effect. </param>
|
---|
| 344 | /// <returns>Orthonormal real / unitary complex matrix Q as result
|
---|
| 345 | /// of decomposition. Size [m x m] or [m x min(m,n)], depending
|
---|
| 346 | /// on <paramref name="economySize"/> (see remarks below)</returns>
|
---|
| 347 | /// <remarks>The function returns Q and R such that the equation
|
---|
| 348 | /// <para>A = Q * R</para> holds with roundoff errors. ('*'
|
---|
| 349 | /// denotes matrix multiplication.)</remarks>
|
---|
| 350 | public static ILRetArray<float> qr( ILInArray<float> A
|
---|
| 351 | , ILOutArray<float> outR, bool economySize ) {
|
---|
| 352 | using (ILScope.Enter(A)) {
|
---|
| 353 | if (Object.Equals(outR, null)) {
|
---|
| 354 | return qr(A);
|
---|
| 355 | }
|
---|
| 356 | int m = A.Size[0];
|
---|
| 357 | int n = A.Size[1];
|
---|
| 358 | if (m < n && economySize) return qr(A, outR, false);
|
---|
| 359 | ILArray<float> ret = empty<float>(ILSize.Empty00);
|
---|
| 360 | if (m == 0 || n == 0) {
|
---|
| 361 | if (!object.Equals(outR,null))
|
---|
| 362 | outR.a = empty<float>(new ILSize(m, n));
|
---|
| 363 | return empty<float>(A.Size);
|
---|
| 364 | }
|
---|
| 365 | int minMN = (m < n) ? m : n;
|
---|
| 366 | int info = 0;
|
---|
| 367 | float[] tau = ILMemoryPool.Pool.New< float>(minMN);
|
---|
| 368 | if (m >= n) {
|
---|
| 369 | ret.a = zeros<float>(m, (economySize) ? minMN : m);
|
---|
| 370 | } else {
|
---|
| 371 | // economySize is always false ... !
|
---|
| 372 | // a temporary array is needed for extraction of the compact lapack Q (?geqrf)
|
---|
| 373 | ret.a = zeros<float>(m, n);
|
---|
| 374 | }
|
---|
| 375 | ret[full, r(0, n - 1)] = A[full, full];
|
---|
| 376 | float[] QArr = ret.GetArrayForWrite();
|
---|
| 377 |
|
---|
| 378 | Lapack.sgeqrf(m, n, QArr, m, tau, ref info);
|
---|
| 379 | if (info != 0) {
|
---|
| 380 | throw new ILArgumentException("error inside lapack library (?geqrf). info=" + info.ToString());
|
---|
| 381 | }
|
---|
| 382 | // extract R, Q
|
---|
| 383 | if (economySize) {
|
---|
| 384 | outR.a = copyUpperTriangle(QArr, m, n, minMN);
|
---|
| 385 |
|
---|
| 386 | Lapack.sorgqr(m, minMN, minMN, QArr, m, tau, ref info);
|
---|
| 387 | } else {
|
---|
| 388 | outR.a = copyUpperTriangle(QArr, m, n, m);
|
---|
| 389 |
|
---|
| 390 | Lapack.sorgqr(m, m, minMN, QArr, m, tau, ref info);
|
---|
| 391 | if (m < n)
|
---|
| 392 | ret.a = ret[full,r(0,m - 1)];
|
---|
| 393 | }
|
---|
| 394 | if (info != 0)
|
---|
| 395 | throw new ILArgumentException("error in lapack library (???gqr). info=" + info.ToString());
|
---|
| 396 | return ret;
|
---|
| 397 | }
|
---|
| 398 | }
|
---|
| 399 | /// <summary>
|
---|
| 400 | /// QR decomposition with pivoting
|
---|
| 401 | /// </summary>
|
---|
| 402 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 403 | /// <param name="outR">[Output] Upper triangular matrix
|
---|
| 404 | /// R as result of decomposition. Size [m x n] or [min(m,n) x n]
|
---|
| 405 | /// (see remarks). </param>
|
---|
| 406 | /// <param name="outE">[Output] Permutation matrix from pivoting. Size [m x m]</param>
|
---|
| 407 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition.
|
---|
| 408 | /// Size [m x min(m,n)]</returns>
|
---|
| 409 | /// <remarks>The function returns Q, R and E such that the equation
|
---|
| 410 | /// <para>A * E = Q * R</para> holds with roundoff errors, where '*'
|
---|
| 411 | /// denotes matrix multiplication. E reflects the pivoting done
|
---|
| 412 | /// inside LAPACK in order to give R increasingly diagonal elements.</remarks>
|
---|
| 413 | /// <seealso cref="ILNumerics.ILMath.qr(ILInArray{double}, ILOutArray{double}, ILOutArray{double},bool)"/>
|
---|
| 414 | public static ILRetArray<float> qr(
|
---|
| 415 | ILInArray<float> A,
|
---|
| 416 | ILOutArray< float> outR,
|
---|
| 417 | ILOutArray< float> outE ) {
|
---|
| 418 | return qr(A, outR, outE, false);
|
---|
| 419 | }
|
---|
| 420 | /// <summary>
|
---|
| 421 | /// QR decomposition with pivoting, possibly economical sized
|
---|
| 422 | /// </summary>
|
---|
| 423 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 424 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 425 | /// result of decomposition. Size [m x n] or [min(m,n) x n] depending
|
---|
| 426 | /// on <paramref name="economySize"/> (see remarks).</param>
|
---|
| 427 | /// <param name="economySize"><para>If true, <list type="bullet">
|
---|
| 428 | /// <item>the size of Q and R will be [m x m] and [m x n] respectively.
|
---|
| 429 | /// However, if m < n, the economySize parameter has no effect on
|
---|
| 430 | /// those sizes.</item>
|
---|
| 431 | /// <item>the output parameter E will be returned as row permutation
|
---|
| 432 | /// vector rather than as permutation matrix</item></list></para>
|
---|
| 433 | /// <para>If false, this function acts exactly as its overload
|
---|
| 434 | /// <see cref="ILNumerics.ILMath.qr(ILInArray{double}, ILOutArray{double}, ILOutArray{double})"/></para>
|
---|
| 435 | /// </param>
|
---|
| 436 | /// <param name="outE">[Output] Permutation matrix from pivoting. Size [m x m].
|
---|
| 437 | /// If this is not null, the permutation matrix/ vector E will be returned.
|
---|
| 438 | /// <para>E is of size [n x n], if <paramref name="economySize"/> is
|
---|
| 439 | /// true, a row vector of length n otherwise</para></param>
|
---|
| 440 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition.
|
---|
| 441 | /// Size [m x m] or [m x min(m,n)], depending on <paramref name="economySize"/>
|
---|
| 442 | /// (see remarks below)</returns>
|
---|
| 443 | /// <remarks><para> If <paramref name="economySize"/> is false, the function
|
---|
| 444 | /// returns Q, R and E such that the equation A * E = Q * R holds within
|
---|
| 445 | /// roundoff errors. </para>
|
---|
| 446 | /// <para>If <paramref name="economySize"/> is true, E will be a permutation
|
---|
| 447 | /// vector and the equation A[":",E] == Q * R holds (except roundoff).</para>
|
---|
| 448 | /// <para>E reflects the pivoting of A done inside LAPACK in order to give R
|
---|
| 449 | /// increasingly diagonal elements.</para></remarks>
|
---|
| 450 | public static ILRetArray<float> qr(
|
---|
| 451 | ILInArray< float> A,
|
---|
| 452 | ILOutArray< float> outR,
|
---|
| 453 | ILOutArray< float> outE,
|
---|
| 454 | bool economySize ) {
|
---|
| 455 | using (ILScope.Enter(A)) {
|
---|
| 456 | if (Object.Equals(outR, null)) {
|
---|
| 457 | return qr(A);
|
---|
| 458 | }
|
---|
| 459 | int m = A.Size[0];
|
---|
| 460 | int n = A.Size[1];
|
---|
| 461 | if (m < n && economySize) return qr(A, outR, false);
|
---|
| 462 | if (m == 0 || n == 0) {
|
---|
| 463 | if (!object.Equals(outR,null))
|
---|
| 464 | outR.a = zeros< float>(m, n);
|
---|
| 465 | if (!object.Equals(outE,null))
|
---|
| 466 | outE.a = zeros< float>(1, 0);
|
---|
| 467 | return empty<float>(A.Size);
|
---|
| 468 | }
|
---|
| 469 | // prepare IPVT
|
---|
| 470 | if (object.Equals(outE, null))
|
---|
| 471 | return qr(A, outR, economySize);
|
---|
| 472 | if (!economySize) {
|
---|
| 473 | outE.a = zeros< float>( n, n);
|
---|
| 474 | } else {
|
---|
| 475 | outE.a = zeros< float>( 1, n);
|
---|
| 476 | }
|
---|
| 477 | int[] ipvt = ILMemoryPool.Pool.New<int>(n);
|
---|
| 478 | int minMN = (m < n) ? m : n;
|
---|
| 479 | int info = 0;
|
---|
| 480 | float[] tau = ILMemoryPool.Pool.New< float>(minMN);
|
---|
| 481 | float[] QArr;
|
---|
| 482 | ILArray<float> ret;
|
---|
| 483 | if (m >= n) {
|
---|
| 484 | ret = zeros<float>(m, (economySize) ? minMN : m);
|
---|
| 485 | } else {
|
---|
| 486 | // economySize is always false ... !
|
---|
| 487 | // a temporary array is needed for extraction of the compact lapack Q (?geqrf)
|
---|
| 488 | ret = zeros<float>( m, n);
|
---|
| 489 | }
|
---|
| 490 | ret[full,r(0,n-1)] = A[full,full];
|
---|
| 491 | QArr = ret.GetArrayForWrite();
|
---|
| 492 |
|
---|
| 493 | Lapack.sgeqp3(m, n, QArr, m, ipvt, tau, ref info);
|
---|
| 494 | if (info != 0) {
|
---|
| 495 | throw new ILArgumentException("error inside lapack library (?geqrf). info=" + info.ToString());
|
---|
| 496 | }
|
---|
| 497 | // extract R, Q
|
---|
| 498 | float[] eArr = outE.GetArrayForWrite();
|
---|
| 499 | if (economySize) {
|
---|
| 500 | outR.a = copyUpperTriangle(QArr, m, n, minMN);
|
---|
| 501 |
|
---|
| 502 | Lapack.sorgqr(m, minMN, minMN, QArr, m, tau, ref info);
|
---|
| 503 | // transform E into out typed vector
|
---|
| 504 | for (int i = 0; i < n; i++) {
|
---|
| 505 | eArr[i] = ipvt[i] - 1;
|
---|
| 506 | }
|
---|
| 507 | } else {
|
---|
| 508 | outR.a = copyUpperTriangle(QArr, m, n, m);
|
---|
| 509 |
|
---|
| 510 | Lapack.sorgqr(m, m, minMN, QArr, m, tau, ref info);
|
---|
| 511 | if (m < n)
|
---|
| 512 | ret.a = ret[full,r(0,m - 1)];
|
---|
| 513 | // transform E into matrix
|
---|
| 514 | for (int i = 0; i < n; i++) {
|
---|
| 515 | eArr[(ipvt[i] - 1) + n * i] = 1.0f;
|
---|
| 516 | }
|
---|
| 517 | }
|
---|
| 518 | if (info != 0)
|
---|
| 519 | throw new ILArgumentException("error in lapack library (???gqr). info=" + info.ToString());
|
---|
| 520 | return ret;
|
---|
| 521 | }
|
---|
| 522 | }
|
---|
| 523 |
|
---|
| 524 | /// <summary>
|
---|
| 525 | /// QR decomposition - raw Lapack output
|
---|
| 526 | /// </summary>
|
---|
| 527 | /// <param name="A">Input matrix A</param>
|
---|
| 528 | /// <returns>Orthonormal / unitary matrix Q and upper triangular
|
---|
| 529 | /// matrix R packed into single matrix. This is the output of the
|
---|
| 530 | /// lapack function ?geqrf.</returns>
|
---|
| 531 | /// <remarks><para>Input matrix A will not be altered. </para>
|
---|
| 532 | /// <para>The matrix returned is the direct output of the lapack
|
---|
| 533 | /// function [d,s,c,z]geqrf respectively. This means that it contains
|
---|
| 534 | /// the decomposition factors Q and R, but they are combined into a
|
---|
| 535 | /// single matrix for performance reasons. If you need one of the factors,
|
---|
| 536 | /// you would use the overloaded function
|
---|
| 537 | /// <see cref="ILNumerics.ILMath.qr(ILInArray{double},ILOutArray{double})"/>
|
---|
| 538 | /// instead, which returns those factors separately.</para></remarks>
|
---|
| 539 | internal static ILRetArray<fcomplex> qr( ILInArray<fcomplex> A ) {
|
---|
| 540 | using (ILScope.Enter(A)) {
|
---|
| 541 | if (!A.IsMatrix)
|
---|
| 542 | throw new ILArgumentException("input A must be matrix");
|
---|
| 543 | int m = A.Size[0], n = A.Size[1];
|
---|
| 544 | ILArray<fcomplex> ret = A.C;
|
---|
| 545 | fcomplex[] tau = ILMemoryPool.Pool.New< fcomplex>((m < n) ? m : n);
|
---|
| 546 | int info = 0;
|
---|
| 547 |
|
---|
| 548 | Lapack.cgeqrf(m, n, ret.GetArrayForWrite(), m, tau, ref info);
|
---|
| 549 | if (info < 0)
|
---|
| 550 | throw new ILArgumentException("an unknown error occoured during decomposition");
|
---|
| 551 | return ret;
|
---|
| 552 | }
|
---|
| 553 | }
|
---|
| 554 | /// <summary>
|
---|
| 555 | /// QR decomposition, returning Q and R
|
---|
| 556 | /// </summary>
|
---|
| 557 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 558 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 559 | /// result of decomposition, size [m x n]</param>
|
---|
| 560 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition, size [m x m]</returns>
|
---|
| 561 | /// <remarks>The function returns Q and R such that the equation
|
---|
| 562 | /// <para>A = Q * R</para> holds within roundoff errors. ('*' denotes
|
---|
| 563 | /// matrix multiplication)</remarks>
|
---|
| 564 | public static ILRetArray<fcomplex> qr(
|
---|
| 565 | ILInArray<fcomplex> A,
|
---|
| 566 | ILOutArray<fcomplex> outR ) {
|
---|
| 567 | return qr(A, outR, false);
|
---|
| 568 | }
|
---|
| 569 | /// <summary>
|
---|
| 570 | /// QR decomposition, returning Q and R, optionally economical sized
|
---|
| 571 | /// </summary>
|
---|
| 572 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 573 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 574 | /// result of decomposition, size [m x n]</param>
|
---|
| 575 | /// <param name="economySize">If true, the size of Q and R will
|
---|
| 576 | /// be [m x m] and [m x n] respectively. However, if m < n,
|
---|
| 577 | /// the economySize parameter has no effect. </param>
|
---|
| 578 | /// <returns>Orthonormal real / unitary complex matrix Q as result
|
---|
| 579 | /// of decomposition. Size [m x m] or [m x min(m,n)], depending
|
---|
| 580 | /// on <paramref name="economySize"/> (see remarks below)</returns>
|
---|
| 581 | /// <remarks>The function returns Q and R such that the equation
|
---|
| 582 | /// <para>A = Q * R</para> holds with roundoff errors. ('*'
|
---|
| 583 | /// denotes matrix multiplication.)</remarks>
|
---|
| 584 | public static ILRetArray<fcomplex> qr( ILInArray<fcomplex> A
|
---|
| 585 | , ILOutArray<fcomplex> outR, bool economySize ) {
|
---|
| 586 | using (ILScope.Enter(A)) {
|
---|
| 587 | if (Object.Equals(outR, null)) {
|
---|
| 588 | return qr(A);
|
---|
| 589 | }
|
---|
| 590 | int m = A.Size[0];
|
---|
| 591 | int n = A.Size[1];
|
---|
| 592 | if (m < n && economySize) return qr(A, outR, false);
|
---|
| 593 | ILArray<fcomplex> ret = empty<fcomplex>(ILSize.Empty00);
|
---|
| 594 | if (m == 0 || n == 0) {
|
---|
| 595 | if (!object.Equals(outR,null))
|
---|
| 596 | outR.a = empty<fcomplex>(new ILSize(m, n));
|
---|
| 597 | return empty<fcomplex>(A.Size);
|
---|
| 598 | }
|
---|
| 599 | int minMN = (m < n) ? m : n;
|
---|
| 600 | int info = 0;
|
---|
| 601 | fcomplex[] tau = ILMemoryPool.Pool.New< fcomplex>(minMN);
|
---|
| 602 | if (m >= n) {
|
---|
| 603 | ret.a = zeros<fcomplex>(m, (economySize) ? minMN : m);
|
---|
| 604 | } else {
|
---|
| 605 | // economySize is always false ... !
|
---|
| 606 | // a temporary array is needed for extraction of the compact lapack Q (?geqrf)
|
---|
| 607 | ret.a = zeros<fcomplex>(m, n);
|
---|
| 608 | }
|
---|
| 609 | ret[full, r(0, n - 1)] = A[full, full];
|
---|
| 610 | fcomplex[] QArr = ret.GetArrayForWrite();
|
---|
| 611 |
|
---|
| 612 | Lapack.cgeqrf(m, n, QArr, m, tau, ref info);
|
---|
| 613 | if (info != 0) {
|
---|
| 614 | throw new ILArgumentException("error inside lapack library (?geqrf). info=" + info.ToString());
|
---|
| 615 | }
|
---|
| 616 | // extract R, Q
|
---|
| 617 | if (economySize) {
|
---|
| 618 | outR.a = copyUpperTriangle(QArr, m, n, minMN);
|
---|
| 619 |
|
---|
| 620 | Lapack.cungqr(m, minMN, minMN, QArr, m, tau, ref info);
|
---|
| 621 | } else {
|
---|
| 622 | outR.a = copyUpperTriangle(QArr, m, n, m);
|
---|
| 623 |
|
---|
| 624 | Lapack.cungqr(m, m, minMN, QArr, m, tau, ref info);
|
---|
| 625 | if (m < n)
|
---|
| 626 | ret.a = ret[full,r(0,m - 1)];
|
---|
| 627 | }
|
---|
| 628 | if (info != 0)
|
---|
| 629 | throw new ILArgumentException("error in lapack library (???gqr). info=" + info.ToString());
|
---|
| 630 | return ret;
|
---|
| 631 | }
|
---|
| 632 | }
|
---|
| 633 | /// <summary>
|
---|
| 634 | /// QR decomposition with pivoting
|
---|
| 635 | /// </summary>
|
---|
| 636 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 637 | /// <param name="outR">[Output] Upper triangular matrix
|
---|
| 638 | /// R as result of decomposition. Size [m x n] or [min(m,n) x n]
|
---|
| 639 | /// (see remarks). </param>
|
---|
| 640 | /// <param name="outE">[Output] Permutation matrix from pivoting. Size [m x m]</param>
|
---|
| 641 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition.
|
---|
| 642 | /// Size [m x min(m,n)]</returns>
|
---|
| 643 | /// <remarks>The function returns Q, R and E such that the equation
|
---|
| 644 | /// <para>A * E = Q * R</para> holds with roundoff errors, where '*'
|
---|
| 645 | /// denotes matrix multiplication. E reflects the pivoting done
|
---|
| 646 | /// inside LAPACK in order to give R increasingly diagonal elements.</remarks>
|
---|
| 647 | /// <seealso cref="ILNumerics.ILMath.qr(ILInArray{double}, ILOutArray{double}, ILOutArray{double},bool)"/>
|
---|
| 648 | public static ILRetArray<fcomplex> qr(
|
---|
| 649 | ILInArray<fcomplex> A,
|
---|
| 650 | ILOutArray< fcomplex> outR,
|
---|
| 651 | ILOutArray< fcomplex> outE ) {
|
---|
| 652 | return qr(A, outR, outE, false);
|
---|
| 653 | }
|
---|
| 654 | /// <summary>
|
---|
| 655 | /// QR decomposition with pivoting, possibly economical sized
|
---|
| 656 | /// </summary>
|
---|
| 657 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 658 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 659 | /// result of decomposition. Size [m x n] or [min(m,n) x n] depending
|
---|
| 660 | /// on <paramref name="economySize"/> (see remarks).</param>
|
---|
| 661 | /// <param name="economySize"><para>If true, <list type="bullet">
|
---|
| 662 | /// <item>the size of Q and R will be [m x m] and [m x n] respectively.
|
---|
| 663 | /// However, if m < n, the economySize parameter has no effect on
|
---|
| 664 | /// those sizes.</item>
|
---|
| 665 | /// <item>the output parameter E will be returned as row permutation
|
---|
| 666 | /// vector rather than as permutation matrix</item></list></para>
|
---|
| 667 | /// <para>If false, this function acts exactly as its overload
|
---|
| 668 | /// <see cref="ILNumerics.ILMath.qr(ILInArray{double}, ILOutArray{double}, ILOutArray{double})"/></para>
|
---|
| 669 | /// </param>
|
---|
| 670 | /// <param name="outE">[Output] Permutation matrix from pivoting. Size [m x m].
|
---|
| 671 | /// If this is not null, the permutation matrix/ vector E will be returned.
|
---|
| 672 | /// <para>E is of size [n x n], if <paramref name="economySize"/> is
|
---|
| 673 | /// true, a row vector of length n otherwise</para></param>
|
---|
| 674 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition.
|
---|
| 675 | /// Size [m x m] or [m x min(m,n)], depending on <paramref name="economySize"/>
|
---|
| 676 | /// (see remarks below)</returns>
|
---|
| 677 | /// <remarks><para> If <paramref name="economySize"/> is false, the function
|
---|
| 678 | /// returns Q, R and E such that the equation A * E = Q * R holds within
|
---|
| 679 | /// roundoff errors. </para>
|
---|
| 680 | /// <para>If <paramref name="economySize"/> is true, E will be a permutation
|
---|
| 681 | /// vector and the equation A[":",E] == Q * R holds (except roundoff).</para>
|
---|
| 682 | /// <para>E reflects the pivoting of A done inside LAPACK in order to give R
|
---|
| 683 | /// increasingly diagonal elements.</para></remarks>
|
---|
| 684 | public static ILRetArray<fcomplex> qr(
|
---|
| 685 | ILInArray< fcomplex> A,
|
---|
| 686 | ILOutArray< fcomplex> outR,
|
---|
| 687 | ILOutArray< fcomplex> outE,
|
---|
| 688 | bool economySize ) {
|
---|
| 689 | using (ILScope.Enter(A)) {
|
---|
| 690 | if (Object.Equals(outR, null)) {
|
---|
| 691 | return qr(A);
|
---|
| 692 | }
|
---|
| 693 | int m = A.Size[0];
|
---|
| 694 | int n = A.Size[1];
|
---|
| 695 | if (m < n && economySize) return qr(A, outR, false);
|
---|
| 696 | if (m == 0 || n == 0) {
|
---|
| 697 | if (!object.Equals(outR,null))
|
---|
| 698 | outR.a = zeros< fcomplex>(m, n);
|
---|
| 699 | if (!object.Equals(outE,null))
|
---|
| 700 | outE.a = zeros< fcomplex>(1, 0);
|
---|
| 701 | return empty<fcomplex>(A.Size);
|
---|
| 702 | }
|
---|
| 703 | // prepare IPVT
|
---|
| 704 | if (object.Equals(outE, null))
|
---|
| 705 | return qr(A, outR, economySize);
|
---|
| 706 | if (!economySize) {
|
---|
| 707 | outE.a = zeros< fcomplex>( n, n);
|
---|
| 708 | } else {
|
---|
| 709 | outE.a = zeros< fcomplex>( 1, n);
|
---|
| 710 | }
|
---|
| 711 | int[] ipvt = ILMemoryPool.Pool.New<int>(n);
|
---|
| 712 | int minMN = (m < n) ? m : n;
|
---|
| 713 | int info = 0;
|
---|
| 714 | fcomplex[] tau = ILMemoryPool.Pool.New< fcomplex>(minMN);
|
---|
| 715 | fcomplex[] QArr;
|
---|
| 716 | ILArray<fcomplex> ret;
|
---|
| 717 | if (m >= n) {
|
---|
| 718 | ret = zeros<fcomplex>(m, (economySize) ? minMN : m);
|
---|
| 719 | } else {
|
---|
| 720 | // economySize is always false ... !
|
---|
| 721 | // a temporary array is needed for extraction of the compact lapack Q (?geqrf)
|
---|
| 722 | ret = zeros<fcomplex>( m, n);
|
---|
| 723 | }
|
---|
| 724 | ret[full,r(0,n-1)] = A[full,full];
|
---|
| 725 | QArr = ret.GetArrayForWrite();
|
---|
| 726 |
|
---|
| 727 | Lapack.cgeqp3(m, n, QArr, m, ipvt, tau, ref info);
|
---|
| 728 | if (info != 0) {
|
---|
| 729 | throw new ILArgumentException("error inside lapack library (?geqrf). info=" + info.ToString());
|
---|
| 730 | }
|
---|
| 731 | // extract R, Q
|
---|
| 732 | fcomplex[] eArr = outE.GetArrayForWrite();
|
---|
| 733 | if (economySize) {
|
---|
| 734 | outR.a = copyUpperTriangle(QArr, m, n, minMN);
|
---|
| 735 |
|
---|
| 736 | Lapack.cungqr(m, minMN, minMN, QArr, m, tau, ref info);
|
---|
| 737 | // transform E into out typed vector
|
---|
| 738 | for (int i = 0; i < n; i++) {
|
---|
| 739 | eArr[i] = ipvt[i] - 1;
|
---|
| 740 | }
|
---|
| 741 | } else {
|
---|
| 742 | outR.a = copyUpperTriangle(QArr, m, n, m);
|
---|
| 743 |
|
---|
| 744 | Lapack.cungqr(m, m, minMN, QArr, m, tau, ref info);
|
---|
| 745 | if (m < n)
|
---|
| 746 | ret.a = ret[full,r(0,m - 1)];
|
---|
| 747 | // transform E into matrix
|
---|
| 748 | for (int i = 0; i < n; i++) {
|
---|
| 749 | eArr[(ipvt[i] - 1) + n * i] = 1.0f;
|
---|
| 750 | }
|
---|
| 751 | }
|
---|
| 752 | if (info != 0)
|
---|
| 753 | throw new ILArgumentException("error in lapack library (???gqr). info=" + info.ToString());
|
---|
| 754 | return ret;
|
---|
| 755 | }
|
---|
| 756 | }
|
---|
| 757 |
|
---|
| 758 | /// <summary>
|
---|
| 759 | /// QR decomposition - raw Lapack output
|
---|
| 760 | /// </summary>
|
---|
| 761 | /// <param name="A">Input matrix A</param>
|
---|
| 762 | /// <returns>Orthonormal / unitary matrix Q and upper triangular
|
---|
| 763 | /// matrix R packed into single matrix. This is the output of the
|
---|
| 764 | /// lapack function ?geqrf.</returns>
|
---|
| 765 | /// <remarks><para>Input matrix A will not be altered. </para>
|
---|
| 766 | /// <para>The matrix returned is the direct output of the lapack
|
---|
| 767 | /// function [d,s,c,z]geqrf respectively. This means that it contains
|
---|
| 768 | /// the decomposition factors Q and R, but they are combined into a
|
---|
| 769 | /// single matrix for performance reasons. If you need one of the factors,
|
---|
| 770 | /// you would use the overloaded function
|
---|
| 771 | /// <see cref="ILNumerics.ILMath.qr(ILInArray{double},ILOutArray{double})"/>
|
---|
| 772 | /// instead, which returns those factors separately.</para></remarks>
|
---|
| 773 | internal static ILRetArray<complex> qr( ILInArray<complex> A ) {
|
---|
| 774 | using (ILScope.Enter(A)) {
|
---|
| 775 | if (!A.IsMatrix)
|
---|
| 776 | throw new ILArgumentException("input A must be matrix");
|
---|
| 777 | int m = A.Size[0], n = A.Size[1];
|
---|
| 778 | ILArray<complex> ret = A.C;
|
---|
| 779 | complex[] tau = ILMemoryPool.Pool.New< complex>((m < n) ? m : n);
|
---|
| 780 | int info = 0;
|
---|
| 781 |
|
---|
| 782 | Lapack.zgeqrf(m, n, ret.GetArrayForWrite(), m, tau, ref info);
|
---|
| 783 | if (info < 0)
|
---|
| 784 | throw new ILArgumentException("an unknown error occoured during decomposition");
|
---|
| 785 | return ret;
|
---|
| 786 | }
|
---|
| 787 | }
|
---|
| 788 | /// <summary>
|
---|
| 789 | /// QR decomposition, returning Q and R
|
---|
| 790 | /// </summary>
|
---|
| 791 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 792 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 793 | /// result of decomposition, size [m x n]</param>
|
---|
| 794 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition, size [m x m]</returns>
|
---|
| 795 | /// <remarks>The function returns Q and R such that the equation
|
---|
| 796 | /// <para>A = Q * R</para> holds within roundoff errors. ('*' denotes
|
---|
| 797 | /// matrix multiplication)</remarks>
|
---|
| 798 | public static ILRetArray<complex> qr(
|
---|
| 799 | ILInArray<complex> A,
|
---|
| 800 | ILOutArray<complex> outR ) {
|
---|
| 801 | return qr(A, outR, false);
|
---|
| 802 | }
|
---|
| 803 | /// <summary>
|
---|
| 804 | /// QR decomposition, returning Q and R, optionally economical sized
|
---|
| 805 | /// </summary>
|
---|
| 806 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 807 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 808 | /// result of decomposition, size [m x n]</param>
|
---|
| 809 | /// <param name="economySize">If true, the size of Q and R will
|
---|
| 810 | /// be [m x m] and [m x n] respectively. However, if m < n,
|
---|
| 811 | /// the economySize parameter has no effect. </param>
|
---|
| 812 | /// <returns>Orthonormal real / unitary complex matrix Q as result
|
---|
| 813 | /// of decomposition. Size [m x m] or [m x min(m,n)], depending
|
---|
| 814 | /// on <paramref name="economySize"/> (see remarks below)</returns>
|
---|
| 815 | /// <remarks>The function returns Q and R such that the equation
|
---|
| 816 | /// <para>A = Q * R</para> holds with roundoff errors. ('*'
|
---|
| 817 | /// denotes matrix multiplication.)</remarks>
|
---|
| 818 | public static ILRetArray<complex> qr( ILInArray<complex> A
|
---|
| 819 | , ILOutArray<complex> outR, bool economySize ) {
|
---|
| 820 | using (ILScope.Enter(A)) {
|
---|
| 821 | if (Object.Equals(outR, null)) {
|
---|
| 822 | return qr(A);
|
---|
| 823 | }
|
---|
| 824 | int m = A.Size[0];
|
---|
| 825 | int n = A.Size[1];
|
---|
| 826 | if (m < n && economySize) return qr(A, outR, false);
|
---|
| 827 | ILArray<complex> ret = empty<complex>(ILSize.Empty00);
|
---|
| 828 | if (m == 0 || n == 0) {
|
---|
| 829 | if (!object.Equals(outR,null))
|
---|
| 830 | outR.a = empty<complex>(new ILSize(m, n));
|
---|
| 831 | return empty<complex>(A.Size);
|
---|
| 832 | }
|
---|
| 833 | int minMN = (m < n) ? m : n;
|
---|
| 834 | int info = 0;
|
---|
| 835 | complex[] tau = ILMemoryPool.Pool.New< complex>(minMN);
|
---|
| 836 | if (m >= n) {
|
---|
| 837 | ret.a = zeros<complex>(m, (economySize) ? minMN : m);
|
---|
| 838 | } else {
|
---|
| 839 | // economySize is always false ... !
|
---|
| 840 | // a temporary array is needed for extraction of the compact lapack Q (?geqrf)
|
---|
| 841 | ret.a = zeros<complex>(m, n);
|
---|
| 842 | }
|
---|
| 843 | ret[full, r(0, n - 1)] = A[full, full];
|
---|
| 844 | complex[] QArr = ret.GetArrayForWrite();
|
---|
| 845 |
|
---|
| 846 | Lapack.zgeqrf(m, n, QArr, m, tau, ref info);
|
---|
| 847 | if (info != 0) {
|
---|
| 848 | throw new ILArgumentException("error inside lapack library (?geqrf). info=" + info.ToString());
|
---|
| 849 | }
|
---|
| 850 | // extract R, Q
|
---|
| 851 | if (economySize) {
|
---|
| 852 | outR.a = copyUpperTriangle(QArr, m, n, minMN);
|
---|
| 853 |
|
---|
| 854 | Lapack.zungqr(m, minMN, minMN, QArr, m, tau, ref info);
|
---|
| 855 | } else {
|
---|
| 856 | outR.a = copyUpperTriangle(QArr, m, n, m);
|
---|
| 857 |
|
---|
| 858 | Lapack.zungqr(m, m, minMN, QArr, m, tau, ref info);
|
---|
| 859 | if (m < n)
|
---|
| 860 | ret.a = ret[full,r(0,m - 1)];
|
---|
| 861 | }
|
---|
| 862 | if (info != 0)
|
---|
| 863 | throw new ILArgumentException("error in lapack library (???gqr). info=" + info.ToString());
|
---|
| 864 | return ret;
|
---|
| 865 | }
|
---|
| 866 | }
|
---|
| 867 | /// <summary>
|
---|
| 868 | /// QR decomposition with pivoting
|
---|
| 869 | /// </summary>
|
---|
| 870 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 871 | /// <param name="outR">[Output] Upper triangular matrix
|
---|
| 872 | /// R as result of decomposition. Size [m x n] or [min(m,n) x n]
|
---|
| 873 | /// (see remarks). </param>
|
---|
| 874 | /// <param name="outE">[Output] Permutation matrix from pivoting. Size [m x m]</param>
|
---|
| 875 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition.
|
---|
| 876 | /// Size [m x min(m,n)]</returns>
|
---|
| 877 | /// <remarks>The function returns Q, R and E such that the equation
|
---|
| 878 | /// <para>A * E = Q * R</para> holds with roundoff errors, where '*'
|
---|
| 879 | /// denotes matrix multiplication. E reflects the pivoting done
|
---|
| 880 | /// inside LAPACK in order to give R increasingly diagonal elements.</remarks>
|
---|
| 881 | /// <seealso cref="ILNumerics.ILMath.qr(ILInArray{double}, ILOutArray{double}, ILOutArray{double},bool)"/>
|
---|
| 882 | public static ILRetArray<complex> qr(
|
---|
| 883 | ILInArray<complex> A,
|
---|
| 884 | ILOutArray< complex> outR,
|
---|
| 885 | ILOutArray< complex> outE ) {
|
---|
| 886 | return qr(A, outR, outE, false);
|
---|
| 887 | }
|
---|
| 888 | /// <summary>
|
---|
| 889 | /// QR decomposition with pivoting, possibly economical sized
|
---|
| 890 | /// </summary>
|
---|
| 891 | /// <param name="A">Input matrix A of size [m x n]</param>
|
---|
| 892 | /// <param name="outR">[Output] Upper triangular matrix R as
|
---|
| 893 | /// result of decomposition. Size [m x n] or [min(m,n) x n] depending
|
---|
| 894 | /// on <paramref name="economySize"/> (see remarks).</param>
|
---|
| 895 | /// <param name="economySize"><para>If true, <list type="bullet">
|
---|
| 896 | /// <item>the size of Q and R will be [m x m] and [m x n] respectively.
|
---|
| 897 | /// However, if m < n, the economySize parameter has no effect on
|
---|
| 898 | /// those sizes.</item>
|
---|
| 899 | /// <item>the output parameter E will be returned as row permutation
|
---|
| 900 | /// vector rather than as permutation matrix</item></list></para>
|
---|
| 901 | /// <para>If false, this function acts exactly as its overload
|
---|
| 902 | /// <see cref="ILNumerics.ILMath.qr(ILInArray{double}, ILOutArray{double}, ILOutArray{double})"/></para>
|
---|
| 903 | /// </param>
|
---|
| 904 | /// <param name="outE">[Output] Permutation matrix from pivoting. Size [m x m].
|
---|
| 905 | /// If this is not null, the permutation matrix/ vector E will be returned.
|
---|
| 906 | /// <para>E is of size [n x n], if <paramref name="economySize"/> is
|
---|
| 907 | /// true, a row vector of length n otherwise</para></param>
|
---|
| 908 | /// <returns>Orthonormal / unitary matrix Q as result of decomposition.
|
---|
| 909 | /// Size [m x m] or [m x min(m,n)], depending on <paramref name="economySize"/>
|
---|
| 910 | /// (see remarks below)</returns>
|
---|
| 911 | /// <remarks><para> If <paramref name="economySize"/> is false, the function
|
---|
| 912 | /// returns Q, R and E such that the equation A * E = Q * R holds within
|
---|
| 913 | /// roundoff errors. </para>
|
---|
| 914 | /// <para>If <paramref name="economySize"/> is true, E will be a permutation
|
---|
| 915 | /// vector and the equation A[":",E] == Q * R holds (except roundoff).</para>
|
---|
| 916 | /// <para>E reflects the pivoting of A done inside LAPACK in order to give R
|
---|
| 917 | /// increasingly diagonal elements.</para></remarks>
|
---|
| 918 | public static ILRetArray<complex> qr(
|
---|
| 919 | ILInArray< complex> A,
|
---|
| 920 | ILOutArray< complex> outR,
|
---|
| 921 | ILOutArray< complex> outE,
|
---|
| 922 | bool economySize ) {
|
---|
| 923 | using (ILScope.Enter(A)) {
|
---|
| 924 | if (Object.Equals(outR, null)) {
|
---|
| 925 | return qr(A);
|
---|
| 926 | }
|
---|
| 927 | int m = A.Size[0];
|
---|
| 928 | int n = A.Size[1];
|
---|
| 929 | if (m < n && economySize) return qr(A, outR, false);
|
---|
| 930 | if (m == 0 || n == 0) {
|
---|
| 931 | if (!object.Equals(outR,null))
|
---|
| 932 | outR.a = zeros< complex>(m, n);
|
---|
| 933 | if (!object.Equals(outE,null))
|
---|
| 934 | outE.a = zeros< complex>(1, 0);
|
---|
| 935 | return empty<complex>(A.Size);
|
---|
| 936 | }
|
---|
| 937 | // prepare IPVT
|
---|
| 938 | if (object.Equals(outE, null))
|
---|
| 939 | return qr(A, outR, economySize);
|
---|
| 940 | if (!economySize) {
|
---|
| 941 | outE.a = zeros< complex>( n, n);
|
---|
| 942 | } else {
|
---|
| 943 | outE.a = zeros< complex>( 1, n);
|
---|
| 944 | }
|
---|
| 945 | int[] ipvt = ILMemoryPool.Pool.New<int>(n);
|
---|
| 946 | int minMN = (m < n) ? m : n;
|
---|
| 947 | int info = 0;
|
---|
| 948 | complex[] tau = ILMemoryPool.Pool.New< complex>(minMN);
|
---|
| 949 | complex[] QArr;
|
---|
| 950 | ILArray<complex> ret;
|
---|
| 951 | if (m >= n) {
|
---|
| 952 | ret = zeros<complex>(m, (economySize) ? minMN : m);
|
---|
| 953 | } else {
|
---|
| 954 | // economySize is always false ... !
|
---|
| 955 | // a temporary array is needed for extraction of the compact lapack Q (?geqrf)
|
---|
| 956 | ret = zeros<complex>( m, n);
|
---|
| 957 | }
|
---|
| 958 | ret[full,r(0,n-1)] = A[full,full];
|
---|
| 959 | QArr = ret.GetArrayForWrite();
|
---|
| 960 |
|
---|
| 961 | Lapack.zgeqp3(m, n, QArr, m, ipvt, tau, ref info);
|
---|
| 962 | if (info != 0) {
|
---|
| 963 | throw new ILArgumentException("error inside lapack library (?geqrf). info=" + info.ToString());
|
---|
| 964 | }
|
---|
| 965 | // extract R, Q
|
---|
| 966 | complex[] eArr = outE.GetArrayForWrite();
|
---|
| 967 | if (economySize) {
|
---|
| 968 | outR.a = copyUpperTriangle(QArr, m, n, minMN);
|
---|
| 969 |
|
---|
| 970 | Lapack.zungqr(m, minMN, minMN, QArr, m, tau, ref info);
|
---|
| 971 | // transform E into out typed vector
|
---|
| 972 | for (int i = 0; i < n; i++) {
|
---|
| 973 | eArr[i] = ipvt[i] - 1;
|
---|
| 974 | }
|
---|
| 975 | } else {
|
---|
| 976 | outR.a = copyUpperTriangle(QArr, m, n, m);
|
---|
| 977 |
|
---|
| 978 | Lapack.zungqr(m, m, minMN, QArr, m, tau, ref info);
|
---|
| 979 | if (m < n)
|
---|
| 980 | ret.a = ret[full,r(0,m - 1)];
|
---|
| 981 | // transform E into matrix
|
---|
| 982 | for (int i = 0; i < n; i++) {
|
---|
| 983 | eArr[(ipvt[i] - 1) + n * i] = 1.0;
|
---|
| 984 | }
|
---|
| 985 | }
|
---|
| 986 | if (info != 0)
|
---|
| 987 | throw new ILArgumentException("error in lapack library (???gqr). info=" + info.ToString());
|
---|
| 988 | return ret;
|
---|
| 989 | }
|
---|
| 990 | }
|
---|
| 991 |
|
---|
| 992 |
|
---|
| 993 | #endregion HYCALPER AUTO GENERATED CODE
|
---|
| 994 |
|
---|
| 995 | }
|
---|
| 996 | } |
---|